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A B S T R A C T

Catechol-containing polyphenols present in coffee and tea, while serving as excellent substrates for catechol-O-
methyltransferase (COMT)-catalyzed O-methylation, can also operate as COMT inhibitors. However, little is
known about the relationship between COMT and the characteristic phenolics present in extra virgin olive oil
(EVOO). We here selected the EVOO dihydroxy-phenol oleacein for a computational study of COMT-driven
methylation using classic molecular docking/molecular dynamics simulations and hybrid quantum mechanical/
molecular mechanics, which were supported by in vitro activity studies using human COMT. Oleacein could be
superimposed onto the catechol-binding site of COMT, maintaining the interactions with the atomic positions
involved in methyl transfer from the S-adenosyl-L-methionine cofactor. The transition state structure for the
meta-methylation in the O5 position of the oleacein benzenediol moiety was predicted to occur preferentially.
Enzyme analysis of the conversion ratio of catechol to O-alkylated guaiacol confirmed the inhibitory effect of
oleacein on human COMT, which remained unaltered when tested against the protein version encoded by the
functional Val158Met polymorphism of the COMT gene. Our study provides a theoretical determination of how
EVOO dihydroxy-phenols can be metabolized via COMT. The ability of oleacein to inhibit COMT adds a new
dimension to the physiological and therapeutic utility of EVOO secoiridoids.

1. Introduction

Human catechol-O-methyltransferase (COMT) is a phase II detox-
ifying enzyme (UniProt code P21964) that catalyzes the transfer of a
methyl moiety from the S-adenosyl-L-methionine (SAM) cofactor to one
of the hydroxyl groups present in endogenous neurotransmitters (e.g.,

catecholamines) and hormones (e.g., estradiol), and also xenobiotic
substances that incorporate catecholic structures (Bai et al., 2007;
Mannisto and Kaakkola, 1999; Zhu and Conney, 1998).

Various catechol-containing coffee and tea polyphenols have been
described as excellent substrates for COMT-mediated O-methylation
(Zhu and Liehr, 1996; Zhu et al., 2000, 2001, 2009). Catechol-
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containing natural polyphenols can also behave as COMT inhibitors,
impeding the O-methylation of a variety of catechol substrates. Such a
dual mechanism has been explained in terms of either direct competi-
tive inhibition of the COMT catalytic center by the catecholic poly-
phenols themselves, or by non-competitive inhibition due to the ele-
vated levels of demethylated SAM (S-adenosyl-L-homocysteine [SAH]),
a very potent feedback inhibitor of various SAM-dependent methyl-
transferases including COMT itself and DNA methyltransferases
(DNMTs), which is generated during the rapid formation of COMT-
formed O-methylated derivatives (Bai et al., 2007; Nagai et al., 2004;
Zhu, 2002; Zhu and Liehr, 1994; Zhu et al., 2008, 2010). Indeed, given
that COMT and DNMT belong to the same family of SAM-dependent
methyltransferases with common core catalytic structures, catechol-
containing dietary polyphenols may operate as cumulative factors that
affect the rate of DNA methylation not only via SAH-related indirect
mechanisms, but also via direct inhibitory occupancy of DNMT catalytic
centers (Fang et al., 2003, 2007; Lee et al., 2005).

Extra virgin olive oil (EVOO) is the oil extracted from the fruits of
olive trees solely by mechanical means and consumed without further

refinement. There is increasing evidence that EVOO phenols exert po-
tent biological activities that could account for the health-promoting
effects of the “Mediterranean Diet” (Angeloni et al., 2017; Colomer
et al., 2008; Crespo et al., 2018; Fuccelli et al., 2018; Lopez-Miranda
et al., 2010; Nikou et al., 2019; Rigacci, 2015; Tomé-Carneiro et al.,
2017). Quantitatively, the class of phenol-conjugated compounds
termed oleosidic secoiridoids or oleosides is the most represented in the
phenolic fraction of EVOO (Bendini et al., 2007; Servili et al., 2009).
The main EVOO secoiridoids are oleuropein and ligstroside, the agly-
cones of which are esters of elenolic acid with hydroxytyrosol or tyr-
osol, respectively. Other secoiridoids are oleacein and oleocanthal, the
dialdehydic forms of decarboxymethyl elenolic acid bound to hydro-
xytyrosol or tyrosol, respectively (Casamenti and Stefani, 2017;
Corominas-Faja et al., 2014; Menendez et al., 2013; Vazquez-Martin
et al., 2012). Interestingly, the main biological metabolite of hydro-
xytyrosol (Serreli et al., 2019), which is present as a simple phenolic
compound and mainly as conjugated forms in secoiridoids, is 3-O-me-
thyl-hydroxytyrosol, an O-methylated product generated by COMT (De
la Torre et al., 2017; Miro-Casas et al., 2003). However, despite the

Fig. 1. Interactions of oleacein and tolcapone with the catalytic binding site of the native COMT enzyme. Molecular structure of oleacein (panel A) and tolcapone
(panel B). The position of the hydroxyl groups in meta-O5 and para-O6 of the aromatic ring is indicated. Left figure in panels C and D shows the best pose of oleacein
and tolcapone coupled to the catalytic binding site of native COMT (3BWM) represented as an electrostatic surface potential. The right figure on panels C and D
shows the COMT-oleacein and -tolcapone enzyme complexes after 3.5 ns of molecular dynamics simulation. The protein has been represented as an electrostatic
surface potential and the water molecules and the Na+ and Cl− ions have been eliminated to facilitate visualization. Above the left figure of panels C and D is the
Gibbs free energy variation calculated with AutoDock/vina v1.1.2 (Trott and Olson, 2010). Panels E and F show details of the interactions between oleacein and
tolcapone, respectively, with native COMT after 3.5 ns of molecular dynamics simulation. The backbone is represented in the form of ribbons and rainbow color. Both
the oleacein and tolcapone structures are shown in stick format and the Mg2+ atom as a light green sphere. S-adenosyl-L-methionine (SAM) is represented as sticks.
The amino acids involved in the formation of coordination bonds with Mg2+ are shown as sticks and numbered. The figure was built using PyMol 2.0 software. (For
interpretation of the references to color in this figure legend, the reader is referred to the Web version of this article.)
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considerable effort expended on characterizing the dual COMT sub-
strate-inhibitor behavior of major polyphenolic components present in
coffee and tea, almost no studies have directly explored the relationship
between COMT and the dietary phenolics existing in EVOO.

Previous studies in our laboratory revealed how the absorption
process and metabolic conversion of the multiple compounds present in
the EVOO phenolic fraction could take place at the cellular level
(Garcia-Villalba et al., 2012). Members of the secoiridoids family of
EVOO phenolics were the most rapidly absorbed and extensively me-
tabolized, mainly as methyl-conjugates. Remarkably, methylated deri-
vatives were exclusively observed not only for catechol-containing lu-
teolin but also for single hydroxytyrosol and hydroxytyrosol-containing
oleuropein aglycone and oleacein. Conversely, no methyl-conjugates
could be found for secoiridoids derived from tyrosol (i.e., ligstroside
aglycone and D-ligstroside aglycone). Our findings using human breast
cancer epithelial cells were in line with previous studies using Caco-
2 cells as a model of the human intestinal epithelium and HepG2 cells as
a model of the human liver, in which methylated derivatives of hy-
droxytyrosol-containing phenolics were the major metabolites detected
(Goya et al., 2007; Manna et al., 2000; Soler et al., 2010). Because
COMT-driven methylation requires the presence of an ortho (O)-di-
phenolic structure, overall these findings strongly suggested that EVOO
dihydroxy-phenols could be preferentially metabolized via COMT-cat-
alyzed O-methylation.

Here, we selected the EVOO-derived dihydroxy-phenol oleacein to
carry out the first virtual computational study of COMT-driven me-
thylation of EVOO biophenols using classic molecular docking and
molecular dynamics (MD) simulations, as well as hybrid quantum me-
chanical/molecular mechanics, which was followed by in vitro activity
studies using human COMT.

2. Results

2.1. Molecular docking simulation of the oleacein-COMT complex: a
comparative study with the COMT inhibitor tolcapone

We carried out a classic molecular docking approach using oleacein
(Fig. 1A), the second-generation COMT inhibitor tolcapone (Fig. 1B),
and the complete structure of the COMT enzyme (Protein Data Bank
[PDB] code 3BWM). The catalytic binding site of COMT for a catechol
ligand consists of a pocket in which the hydroxyl group must be placed
in the para position mono-coordinated to Mg2+. The cofactor SAM is in
a nearby position to serve as the methyl donor (Tsao et al., 2011).

We initially sought to evaluate whether the interaction of oleacein
and tolcapone with COMT preferentially took place at the catalytic
binding site. Rigid docking simulations of tolcapone produced up to
three clusters of docking poses that were located in the vicinity of the
COMT catalytic site (Fig. 1C and D). Tolcapone binding energies
reached −9.51 kcal/mol in the #1 ranked cluster. By contrast, rigid
docking simulations of oleacein indicated that the top-two ranked
clusters were located away from the catalytic binding site. The best
pose of oleacein that coupled to the catalytic site of COMT (#3 ranked
cluster) showed a binding energy of −6.42 kcal/mol. The tolcapone
molecule exhibiting the best binding energy in cluster #1 and the
oleacein molecule in cluster #3 were subsequently chosen for MD si-
mulations.

2.2. Molecular dynamics simulation of the oleacein-COMT complex: a
comparative study with the COMT inhibitor tolcapone

While molecular docking simulations can be applied to explore and
predict the binding modes of a substrate to an enzyme (by extension, to
any other biomolecule), MD can provide additional information about
different intra- and inter-molecular movements over time (Land and
Humble, 2018; Maximova et al., 2016). Thus, to add protein flexibility
to the analysis of the oleacein-COMT and tolcapone-COMT complexes,

we carried out short MD simulations over the course of 100 ns.
Two notable differences were observed when comparing the MD-

predicted interactions of oleacein and tolcapone with the surface of the
catalytic binding site of COMT (Fig. 1E and F). In the case of tolcapone,
a rearrangement of the side chains of the amino acids of the catalytic
site takes place during the first nanosecond of MD simulation. In the
case of oleacein, however, those changes in the surface of the catalytic
binding site cannot be observed in the first 3.5 ns of MD simulation.
Such a rearrangement of the side chains presents a cavity that allows
visualizing the SAM cofactor. Moreover, while the oleacein hydroxyl
group in position para-O6 is positioned in a plane superior to Mg2+ at a
suitable distance to form a coordination bond between them before the
first 3.5 ns of MD simulation, we noted that the equivalent hydroxyl
group in tolcapone moves away from the coordination distance with
Mg2+. The sphere of coordination with Mg2+ is maintained by the
residues Asn170, Glu199 and Asp141 in the same coordination plane;
and by the residue Asp169 in a lower plane.

We assumed that the hydroxyl group of oleacein was deprotonated
in a previous step, as occurs for other COMT substrates including ca-
techol. The amino group of Lys144 is believed to be responsible for such
deprotonation, which can occur at physiological pH (Brandt et al.,
2015; Kiss and Soares-da-Silva, 2014; Sparta and Alexandrova, 2012;
Tsao et al., 2011). Indeed, the distance between the deprotonated
oxygen para-O6 and meta-O5 of oleacein and the amino group was 3.2 Å
and 2.7 Å, respectively (Fig. 1E), making deprotonation by the lysine
residue plausible. In such a scenario, the para-O6 of the oleacein mo-
lecule would be located at a suitable distance to formalize a co-
ordination bond with Mg2+, in a plane superior to that defined by the
triad Asn170, Glu199 and Asp141. The meta-O5 would also be at a
suitable distance from the SAM cofactor to receive its methyl group in
the course of the reaction catalyzed by COMT. By contrast, neither of
the two hydroxyl groups of the aromatic ring of the tolcapone molecule
appeared to perform chelation with the Mg2+ ion (Fig. 1F). This si-
tuation likely explains why the position of tolcapone becomes drasti-
cally altered throughout the MD simulation with respect to the initial
event of rigid molecular docking. These observations overall predicted
that, while oleacein could behave as a COMT substrate whose catalysis
would generate meta-O5 methyl-oleacein as a product, such a substrate
nature cannot be observed in the case of tolcapone. Therefore, it ap-
pears that the behavior of a given molecule as a COMT substrate (e.g.,
oleacein) necessarily requires the establishment of a sphere of co-
ordination between the para-O6 hydroxyl group and Mg2+, whereas
such an interaction is not required to show an inhibitory behavior (e.g.,
tolcapone). Accordingly, experimental data have shown that only 2.1%
of metabolized tolcapone can be found as circulating meta-O5 methyl
tolcapone in human plasma (Jorga et al., 1999).

2.3. Virtual computational simulation of COMT-catalyzed oleacein
methylation

Our simulation system took advantage of a previous study revealing
the coordinates of the transition state (TS) structure found for the SAM-
dependent catechol methylation reaction occurring in the active site of
COMT (Kulik et al., 2016). The stationary structures obtained (i.e.,
reactants [R], transition states [TS], and products [P]) following both
oleacein and tolcapone methylations in meta-O5 positions are shown in
Fig. 2. The COMT protein backbone root mean square deviation
(RMSD) plots of the ligands heavy atoms R, SAM versus oleacein or
tolcapone (Fig. 2A and D), TS, SAH and methyl versus oleacein or tol-
capone (Fig. 2B and E), and P, SAH versus meta-O5 methyl oleacein
(Fig. 2C) or para-O6 methyl oleacein or meta-O5 methyl tolcapone
(Fig. 2F) or para-O6 methyl tolcapone, measured after superimposing
COMT on its reference structure during the 100 ns period of the MD
simulation, are shown in Fig. 3. These MD simulations of the ligand-
protein complexes included also the protein version containing the
functional Val158Met (V108M) polymorphism of the COMT gene, which
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presents lower enzymatic activity than the parental form in addition to
lower expression levels in vivo (Rutherford et al., 2008). Although M108
(PDB code 3BWY) is found at about 16 Å from SAM, the interactions of
its lateral chain with the residues Ala22 and Arg78 presume a dis-
placement of the protein backbone of 0.7 Å that propagates through
SAM to the catalytic binding site (Rutherford et al., 2008).

Careful analysis of the ligand movements in the binding pockets of
COMT and COMT V108M indicated that, in the case of oleacein, the
position of R, TS and P (meta-O5- or para-O6-methyl oleacein) remains
constant from 10 ns with respect to the starting structure (i.e., that
resulting from the molecular docking of oleacein to the holoenzyme) at
time 0 ns, not only for the parental form of COMT but also for the
V108M form (Fig. 4A,C). A completely different picture emerged,
however, in the case of tolcapone (Fig. 4B,D); in the parental form of
COMT, only tolcapone in the TS remains constant in its position at the
catalytic binding site, whereas both R and P (meta-O5- or para-O6-
methyl tolcapone) shift (60 ns from the beginning of the MD simula-
tion) to an average of 30 Å with respect to the starting structure (re-
sulting from the molecular docking of tolcapone to the holoenzyme) at
time 0 ns. In the case of V108M COMT, only tolcapone in R undergoes a
large movement (40 ns from the beginning of the MD simulation) of
about 35 Å; yet, meta-O5 methyl tolcapone in R shows an up movement
of about 10 Å with respect to the site initially occupied at the beginning
of the MD simulation. These data suggest that, although both R (i.e.,
tolcapone) and P (meta-O5-methyl or para-O6-methyl tolcapone) could
behave as noncompetitive COMT inhibitors, the P forms of tolcapone
are predicted to be rarely generated. Most of the changes in the sec-
ondary structural motifs (i.e., helix, sheet, coil, turn, radius of gyration,
and hydrogen bonds) of parental and V108M COMT were small, with
the exception of some structures including tolcapone (Supplementary
Figs. S1–S7).

To further verify the stability of the protein-ligand complexes, we
carried out an evaluation of the Molecular Mechanics/Poisson-
Boltzmann Surface Area (MM/PBSA) parameter (Wang et al., 2016),
which estimates the free energy of the binding of small ligands to

biological macromolecules, uses MD simulations of the receptor-ligand
complex, and is known to show good correlations with the values ob-
tained experimentally despite excluding the conformational entropy or
the number and free energy of water molecules in the binding site
(Genheden and Ryde, 2015; Wang et al., 2016) (Fig. 5). The values of
free energy calculated for the union of oleacein to parental COMT and
V108M COMT show negative values for R, TS and P meta-O5 methy-
lation and para-O6 methylation and, consequently, we cannot predict a
stable and strong binding to the enzyme (Fig. 5A,C). The average
binding energy (calculated as the average of the last 10 ns or during the
100 ns of total duration of the MD) shows similar (negative) values for
the parental COMT- or V108M-oleacein (and products) complexes; the
product para-O6-methyl oleacein shows a very unfavorable binding
energy (above −315 kcal/mol) for both forms of COMT; the product
meta-O5-methyl oleacein shows a more favorable binding energy for the
parental form of COMT (above −180 kcal/mol) than for V108M COMT
(above −190 kcal/mol). The binding energy of R oleacein is better for
the V108M form (above −165 kcal/mol) than for the parental form of
COMT (about −190 kcal/mol) and, therefore, a lower enzymatic ac-
tivity of the V108M form of COMT could be predicted; the average
binding energy shows similar (positive) values for the parental COMT-
or V108M-tolcapone (and products) complexes, therefore predicting an
inhibitory role (but not a substrate) of tolcapone for both COMT forms
(Fig. 5B,D). The latter notion is supported further by the fact that the
methylation products of tolcapone (meta-O5-methyl tolcapone and
para-O6-methyl tolcapone) exhibit not only an early displacement of
the catalytic binding site but also higher binding energies than the re-
actant.

2.4. A Quantum Mechanics/Molecular Mechanics (QM/MM) approach to
confirm the COMT-driven methylation of oleacein

We sought to theoretically confirm the aforementioned putative
methylation mechanism of the EVOO phenolic oleacein by performing
Quantum Mechanics/Molecular Mechanics (QM/MM) simulations. This

Fig. 2. Representation of the stationary structures corresponding to reactants (R, panels A and D), transition states (TS, panels B and E), and products (P, panels C and
F) by methylation of a single oleacein or tolcapone hydroxyl to form the meta-O5 methylated product. The snapshot corresponds to the 3.5 ns time of the molecular
dynamics simulation. The amino acids involved in the formation of coordination bonds with Mg2+ are shown as sticks and numbered, and the Mg2+ atom as a light
green sphere. S-adenosyl-L-methionine (SAM) and S-adenosyl-L-homocysteine (SAH) are represented as sticks. The water molecules and the Na+ and Cl− ions have
been eliminated to facilitate visualization. The figure was built using PyMol 2.0 software. (For interpretation of the references to color in this figure legend, the reader
is referred to the Web version of this article.)
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is a hybrid computation approach widely used in studies of enzymatic
catalysis in which the region of primary interest is treated quantum
mechanically, while the surrounding portion of the enzyme is described
with an empirical molecular mechanics model (Kamerlin et al., 2009;
Viciano et al., 2015; Kulik et al., 2016; Roston and Cui, 2016).

We performed QM/MM calculations to theoretically describe the
reaction in which a methyl group is transferred in a SN2 reaction from
SAM to the deprotonated alcohol of oleacein. Because both hydroxyl
groups of the benzenediol moiety of oleacein were predicted to be
susceptible to deprotonation and, therefore, they might act as attacking
nucleophiles, we studied the transfer reaction for both meta-methyla-
tion in the position O5 and para-methylation in the position O6. To
evaluate such chemical reactivity, the region of primary interest was
treated quantum mechanically and included the SAM cofactor, the
oleacein molecule, and the Mg2+ ion. These atoms were described by
the density functional theory (B3LYP) methodology using the 6–31(d,p)
basis set. The surrounding portion of the enzyme was described by
means of empirical MM using the all-atoms optimized potentials for
liquid simulations (OPLS-AA) force field for the protein and the TIP3P
potential for the water molecules. Once TS were localized, they were
characterized by Hessian inspection and minimum energy paths were
traced down to their corresponding minima, thereby ensuring that the
structures actually connected reactants and intermediates. When com-
paring the energetic barriers following oleacein methylation in both
meta- and para-positions, we noticed that the para-methylation barrier
would be actually about twice as high as that for the meta-methylation

reaction of oleacein (Supplementary Fig. S8). Thus, whereas the po-
tential activation energy for the meta-methylation reaction of oleacein
was as low as 14 kcal/mol, the corresponding activation energy for the
para-methylation reaction was calculated as 27 kcal/mol. The first re-
action was predicted to occur through an exothermic process while the
latter appeared to take place through an endothermic one.

2.5. Effects on oleacein on COMT-catalyzed catechol methylation

We finally investigated the inhibitory effect of oleacein on the O-
methylation of catechol catalyzed by the soluble form of human COMT
(s-COMT) using a radiometric assay. The method is based on the con-
version of catechol to 3H-guiacol by COMT in the presence of Mg2+ and
methyl 3H-labeled SAM (Zurcher and Da Prada, 1982). When graded
concentrations (from 0.2 to 100 μmol/L) of oleacein were added to the
incubation mixture, the rate of O-methylation of catechol by s-COMT
was inhibited in a concentration-dependent manner (Fig. 6, left panel).
The average 50% inhibitory concentration (IC50) value of oleacein for
inhibiting the O-methylation of catechol by s-COMT was
3.08 ± 0.3 μmol/L.

We explored also whether the inhibitory effects of oleacein on s-
COMT became altered when tested against the functional version
V108M s-COMT. Similar to that observed with the parental s-COMT,
when different concentrations of oleacein were added to the incubation
mixture the rate of catechol O-methylation by V108M s-COMT was also
inhibited in a concentration-dependent manner (Fig. 6, right panel); the

Fig. 3. Root mean square deviation of the ligand heavy atoms over simulation time, measured after superposing the protein on its reference structure. In the context
of the molecular dynamic simulations presented here, it is considered as a ligand to oleacein or tolcapone in the states of reactants, transition state and Products
(meta-O5 methylated and para-O6 methylated). Panels A and B show the trajectories of the ligands forming complexes with COMT, whereas panels C and D show the
trajectories of the different ligands forming complexes with the V108M COMT. Shown within each panel is the legend that indicates the correspondence with each
ligand.
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average IC50 value of oleacein for inhibiting the O-methylation of ca-
techol by V108M s-COMT was 2.9 ± 0.2 μmol/L, a similar potency to
that observed with parental s-COMT.

3. Discussion

Our bio-computational approach provides the first theoretical eva-
luation and experimental confirmation that EVOO dihydroxy-phenols
such as the secoiridoid oleacein can operate as dual substrate-inhibitors
of COMT.

From our computational studies, we could infer that a deprotonated
hydroxyl O5 group of the oleacein molecule is methylated by the SAM
cofactor in the active site of COMT. Oleacein is predicted to liberate its
para-O6 hydroxyl group to form a co-ordinate bond with Mg2+, thereby
enabling a free meta-O5 hydroxyl group to receive a methyl group from
SAM to generate SAH and meta-O5 methyl oleacein as final products.
The transition state structure for the meta-methylation O5 reaction was
predicted by QM/MM to occur preferentially over the production of the
para-methylation, with methylation energies (14 kcal/mol) even lower
than those theoretically (16–22 kcal/mol) and experimentally
(18.4 kcal/mol) determined for the catechol molecule (Roca et al.,
2003; Sparta and Alexandrova, 2012; Kulik et al., 2016; Jindal and
Warshel, 2016). Given that earlier studies have shown that methylated
conjugates were the major derivatives detected following oleacein
metabolization by cultured cancer cells, it is reasonable to suggest that
a critical in vivo metabolic step of EVOO dihydroxy-phenols is COMT-
catalyzed O-methylation. 3-O-methyl-hydroxytyrosol, the COMT-de-
rived biological metabolite of the single dihydroxy-phenol hydro-
xytyrosol, has been shown to exert a protective effect on cardiovascular
disease and total mortality (De la Torre et al., 2017). Therefore, it re-
mains of crucial importance to definitively determine whether methy-
lated derivatives of EVOO complex dihydroxy-phenols such as the

secoiridoid oleacein are differentially bioactive when compared with
their parental compounds, as occurs with bona fide catechol-containing
polyphenols such as epigallocatechin gallate (Landis-Piwowar et al.,
2010; Wang et al., 2012).

From our experimental studies we could confirm that, similar to
well-known catechol-containing dietary polyphenols, EVOO secoir-
idoids such as oleacein can behave as COMT inhibitors capable of
suppressing the O-methylation of a variety of catechol substrates. The
inhibitory potency of oleacein to human COMT-mediated catechol O-
methylation remained unaltered when the native COMT protein was
substituted by the Val158Met genetic variant. The V109M substitution
reduces the activity of COMT to one-quarter of the parental Val allele
(Lachman et al., 1996; McLeod et al., 1998), which has been associated
with significant differences in brain function and behavior as well as
cancer susceptibility (Antypa et al., 2013; Chen et al., 2016; He et al.,
2012; Huang et al., 2016; Klebe et al., 2013; Sak, 2017; Witte and Floel,
2012). Several meta-analyses have suggested that while the COMT
Val158Met polymorphism might not be a risk factor for overall cancer
risk, it may, nevertheless, be involved in cancer development, at least in
some ethnic groups or specific cancer types (Zhou et al., 2015). Since
low COMT activity and consumption of certain dietary polyphenols
have been linked to a decreased risk in breast cancer via a decrease of
potentially carcinogenic, circulating estrogens (Wu et al., 2003a; b,
2005), it would be relevant to explore whether the consumption of
oleacein-rich EVOO may be more cancer protective in individual car-
rying the low activity COMT polymorphism (i.e., whether a seeming
predictor of oleacein potency in vivo may inversely correlate with in-
dividual COMT activity status). In a clinical setting, COMT status might
therefore be used to determine which individuals would benefit from
EVOO consumption/oleacein treatment as a dietary strategy to reduce
the onset and recurrence of certain cancers, including breast cancer.
Nonetheless, it might also occur that EVOO polyphenol chemicals

Fig. 4. Detail of the interactions of oleacein (left figure in panels A and C), meta-O5 methylated oleacein (right figure in panels A and C), tolcapone (left figure in
panels B and D), and meta-O5 methylated tolcapone (right figure in panels B and D) compounds complexed to COMT (A, B) or V108M COMT (C, D), indicating the
amino acids involved and the type of interaction (hydrogen bonds, hydrophobic interactions, salt bridges, π-stacking, etc). The interactions were detected with the
FLIP algorithm (Salentin et al., 2015). S-adenosyl-L-methionine (SAM) and S-adenosyl-L-homocysteine (SAH) are represented as sticks and the Mg2+ atom as a pink
sphere. The figure on the left of each panel corresponds to a snapshot taken at 3.5 ns of the molecular dynamics simulation, while the figure on the right results from
the acquisition of a snapshot at 100 ns of the simulation. Water molecules and the Na+ and Cl− ions have been eliminated to facilitate visualization. The figure was
built using PyMol 2.0 software. (For interpretation of the references to color in this figure legend, the reader is referred to the Web version of this article.)
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would require their complex, natural combination forms to exhibit
superior chemopreventive or anti-cancer activities as compared with
their single components if they depend on interactions with other
EVOO phenolic components for efficacy (Bode and Dong, 2009; Sak,
2017; Shimizu et al., 2005; Skates et al., 2018; Suganuma et al., 1999;
Wang et al., 2012). Thus, if the bioavailability of a given EVOO phe-
nolic would be increased by suppressing the formation of COMT-de-
rived O-methylated metabolites by other phenolic components of the
mixture, such synergistic action between phenolic molecules containing
catechol-like moieties might be physiologically relevant to understand
not only the cancer-preventive actions of EVOO, but also in reducing
the risk of other chronic diseases when combined with other phenolic-
containing products in the Mediterranean diet (e.g., cardiovascular

diseases and moderate consumption of red wine; De la Torre et al.,
2017).

Our current findings provide a new scenario in which it would be of
interest to evaluate the nature of the anti-tumoral cytotoxic interactions
between EVOO dihydroxy-phenols and nitrocatechols such as tolcapone
and entacapone, two clinically approved COMT inhibitors in the man-
agement of Parkinson's disease (Forester and Lambert, 2014; Kiss and
Soares-da-Silva, 2014; Wang et al., 2014). Moreover, the fact that
EVOO di-hydroxyphenols such as oleacein can serve as naturally-oc-
curring COMT inhibitors might be exploited for the development of
combinatorial strategies aimed at preventing neurodegeneration in
some pathological settings such as Alzheimer's and Parkinson's diseases,
for example by improving L-DOPA bioavailability via suppressing

Fig. 5. Molecular Mechanics/Poisson-Boltzmann Surface Area free energy analysis of COMT (panels A and B) and V108M COMT (panels C and D) forming complexes
with reactants, transition states and products of oleacein (A and C) and tolcapone (B and D) using YASARA dynamics v18.12.27 software. In each case, the best-
docked complex as the initial conformation for the simulation, followed by 1000 snapshots obtained from the molecular dynamics trajectory were employed to
calculate the values of free energy binding of the native and polymorphic enzymes. Additionally, the average calculated value of the last 100 snapshots is displayed.
YASARA-calculated binding energy presents positive values when the union is stable and strong, whereas negative values indicate no binding (Winkler et al., 2019).
The legend included within each panel indicates whether the actual value computes the last 10 ns or the entire simulation time (100 ns).

Fig. 6. Inhibition of s-COMT- (left) and V108M s-COMT- (right) mediated O-methylation of catechol by increasing concentrations of oleacein and tolcapone. Each
point is the mean of duplicate determinations.
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COMT-driven conversion of L-DOPA to 3-O-methyldopa (Kang et al.,
2010; Perkovic et al., 2018; Serretti and Olgiati, 2012), or for im-
proving cognitive efficiency in aging (Sambataro et al., 2012). Combi-
nations of natural and synthetic COMT-targeting agents might be more
effective (and have fewer side-effects) for preventing or treating aging-
related chronic diseases because they would likely require lower doses
of the molecular-targeted agents. In this regard, the in vitro potency of
oleacein in inhibiting COMT-catalyzed catechol methylation (in the low
micromolar range) was notably weaker than the second-generation
COMT inhibitor tolcapone (which occurred in the low nanomolar
range, i.e., IC50= 5.2 and 4.9 nmol/L against s-COMT and V108M s-
COMT, respectively). Perhaps more importantly, considering the role of
the common COMT rs4680 (Val158Met) genotype in determining the
cancer-preventive (or lack of) nature of key micronutrients such as vi-
tamin E/α-tocopherol (Hall et al., 2019), it should be noted that olea-
cein and tolcapone were predicted to operate as COMT substrates/in-
hibitors via highly dissimilar mechanisms, especially regarding their
mechanisms of action against the V108M COMT variant. Specifically,
the catalytic activity of V108M COMT is not expected to be significantly
altered when there is no significant displacement of the substrate/
product from the catalytic site, as is the case of oleacein. However, the
weakened activity of COMT upon a non-synonymous valine-to-me-
thionine substitution might become relevant when the substrate/pro-
duct should be evicted from the active site, as is the case of tolcapone.

Because the methyl group with which COMT carries out targeted
modification of catechol compounds is provided by the cofactor SAM,
the COMT-mediated rapid methylation of large amounts of dietary ca-
techols could be expected not only to reduce the intracellular pools of
SAM, but also to generate significant amounts of demethylated SAH.
SAH is a very potent non-competitive inhibitor of various SAM-de-
pendent methylation reactions including those catalyzed by COMT and
also by DNMTs, and very low concentrations of intranuclear SAH might
suffice to cause a meaningful inhibition of enzymatic DNA methylation
(Huang et al., 2019; Lee and Zhu, 2006). Our current findings provide a
theoretical mechanistic basis for the notion that EVOO dihydroxy-
phenols can function as important, indirect modulators of the cellular
DNA methylation process through increased formation of SAH during
COMT-mediated O-methylation. Moreover, because both COMT and
DNMTs belong to the same superfamily of SAM-dependent methyl-
transferases and share a common core structure at the catalytic site
(Cheng, 1995; Fang et al., 2003), EVOO dihydroxy-phenols may act as
direct inhibitors of DNMTs. Accordingly, we have recently provided
computational evidence predicting the ability of oleacein to bind the
DNA-binding catalytic pockets of DNMTs, and experimental confirma-
tion that oleacein can function as a direct inhibitor of the SAM-de-
pendent methylation activity of several DNMTs (Corominas-Faja et al.,
2018). Hence, EVOO secoiridoids might certainly produce cumulative
effects on the rate of DNA methylation through non-competitive in-
hibition of DNMTs via the formation of SAH during their metabolic
methylation by COMT, and independently of their own methylation
through a direct inhibition of DNMTs.

4. Conclusions

The findings of our present study provide new insights into the
mechanisms through which EVOO phenolics interact with and alter the
functioning of the SAM/SAH-related methylation machinery. While it
might be argued that the average daily intake of EVOO dihydroxy-
phenols may not represent an overwhelming burden for the SAM-de-
pendent COMT- and DNMT-mediated methylation system, it should be
noted that such effects may be notably more significant if a normal diet
is substituted by one with limited amounts of methyl donors (e.g. me-
thionine restriction) or if such dual substrate-inhibitors of COMT ac-
tivity are given as part of mixtures containing COMT- or DNMT-tar-
geted inhibitors.

5. Materials and methods

5.1. Molecular docking simulations

The structures of oleacein (PubChem CID: 18684078) and tolcapone
(PubChem CID: 4659569) were obtained from the National Center for
Biotechnology Information (NCBI) PubChem database (http://www.
ncbi.nlm.nih.gov/pccompound). The atomic coordinates of the COMT
protein were obtained from PDB using either the PDB 3BWM (parental
COMT) or 3BWY (COMT V108M). COMT structure was subjected to
geometry optimization using the repair function of the FoldX algorithm
(Schymkowitz et al., 2005). Molecular docking experiments were per-
formed with AutoDock/Vina using YASARA dynamics v18.12.27 soft-
ware (Krieger and Vriend, 2014; Winkler et al., 2019), as previously
described (Encinar et al., 2015; Galiano et al., 2016; Ruiz-Torres et al.,
2018). A total of 700 flexible docking runs were set and clustered
around the putative binding sites. Two complexed compounds were
considered to belong to different clusters of hot spot conformations if
the ligand RMSD of their atomic positions was larger than a minimum
of 6 Å. The YASARA pH command was set to 7.4. The YASARA software
calculated the Gibbs free energy variation (ΔG, kcal/mol), with more
positive energy values indicating stronger binding. Values included in
Fig. 1 are with a negative sign. All the figures were prepared using the
PyMol 2.0 software and all the interactions were detected using the
PLIP algorithm (Salentin et al., 2015).

5.2. Molecular dynamics simulations

YASARA dynamics v18.12.27 was also used for all the MD simula-
tions with AMBER14 as a force field. The simulation cell was allowed to
include 20 Å surrounding the protein and filled with water at a density
of 0.997 g/mL. Initial energy minimization was carried out under re-
laxed constraints using steepest descent minimization. Simulations
were performed in water at constant pressure-constant temperature
(25 °C) conditions. To mimic physiological conditions, counter ions
were added to neutralize the system; Na+ or Cl− were added in re-
placement of water to give a total NaCl concentration of 0.9% and pH
was maintained at 7.4. Hydrogen atoms were added to the protein
structure at the appropriate ionizable groups according to the calcu-
lated pKa in relation to the simulation pH (i.e., a hydrogen atom will be
added if the computed pKa is higher than the pH). The pKa was com-
puted for each residue according to the Ewald method (Krieger et al.,
2006). All simulation steps were run by a preinstalled macro
(md_run.mcr) within the YASARA suite. Data were collected every 100
ps.

TMM/PBSA was implemented with the YASARA macro md_analy-
zebindenergy.mcr to calculate the binding free energy with solvation of
the ligand, complex, and free protein for the COMT native and V108M
form complexes. The binding free energy (kcal/mol) was expressed
according to the following equation:

ΔEbinding= [poterec(i) + solverec(i) + potelig + solvelig] - [potecmp
(i) + solvecmp(i)]

where i is the position number, “pote” is the potential energy for the
complex (potecmp), free protein (poterec), or free ligand (potelig), and
“solve” is the solvation energy for the complex (solvecmp), free protein
(solverec), or free ligand (solvelig). More positive binding free values
indicate better binding.

5.3. Quantum mechanics/molecular mechanics calculations

Taking advantage of the similarity between the catechol and the
oleacein dihydroxy-phenol moiety, oleacein was superimposed over the
catechol-binding site of COMT and forced to maintain the interactions
with the atomic positions involved in the methyl transfer from the SAM
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cofactor. This system was then solvated and equilibrated by means of a
short MD simulation. As suggested by the catechol literature, we chose
the bidentate coordination of the oleacein molecule to a COMT active
site containing the Mg2+ ion (Lau and Bruice, 1998; Bonifácio et al.,
2007; Law et al., 2016; Patra et al., 2016). The system set-up and all the
calculations were performed using the dynamo program (Field, 2008)
coupled to ORCA v3.0.3 (Neese, 2012). Graphical representations were
prepared using VMD v1.9.1.

5.4. Oleacein isolation and purification

Oleacein (decarboxymethyl oleuropein aglycone) was isolated and
purified from the phenolic fraction of EVOO as described previously
(Corominas-Faja et al., 2018).

5.5. COMT activity assays

COMT and V108M COMT activity assays were performed using the
Flashplate Catechol O-methyltransferase service (Reaction Biology
Corp., Malvern, PA, USA). Oleacein was dissolved in DMSO at a stock
concentration of 10mmol/L and tested in 10-dose IC50 mode with a 2-
fold serial dilution in duplicate (COMT) or singlet (COMT V108M),
starting at 100 μmol/L. Tolcapone was tested in 10-dose IC50 mode with
a 3-fold serial dilution starting at 1 μmol/L. The reaction (i.e., S-ade-
nosyl-L-[methyl]-3H]methionine + catechol → S-adenosyl-L-homo-
cysteine + guaiacol [methyl-3H]) was carried out in the presence of
1 μmol/L SAM, whereas the catechol substrate was at 0.5 μmol/L. A no-
inhibitor control was considered 100%. Curve fits were performed
where the enzymes activities at the highest concentration of compounds
were less than 65%.
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