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Figure S1. Insulin secretion and content upon treatment with bisphenols. (A and
B) Insulin secretion was measured at 2.8, 8.3 and 16.7 mM glucose in islets from
C57BL/6J mice treated ex vivo with vehicle (control; black circles and white bars) or 1
nM BPA (red circles and light grey bars). (A) After 2 h of recovery, treatments (vehicle
or BPA) were added to each glucose solution so that the islets remained under treatment
during the whole experiment. (B) Islets were treated ex vivo with vehicle or BPA for 48
h, and then, glucose-stimulated insulin secretion was performed in the absence of
treatments. (C-H) Insulin content was measured after GSIS of the experiments
described in the Figure 1. Mouse islets from C57BL/6J mice treated ex vivo with
vehicle (control; black circles and white bars), 1| nM BPA (A and F; red circles), BPS
(D and G; green circles) or BPF (E and H; yellow circles). Insulin content was
measured by ELISA. Data are shown as means + SEM of six independent islet
preparations isolated on three different days: *p<0.05, **p<0.01, ***p<0.001 vs 2.8
mM; #p<0.05, #p<0.01, #*p<0.001 comparisons indicated by bars (one-way ANOVA);
%p<0.05 (Student’s t-test).
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Figure S2. 100 nM and 1pM BPS do not reduce whole-cell Ca?* currents viaERS
in f-cells. (A and B) Average relationship between Ca*" current density (Ca>" currents
in pA normalized to the cell capacitance in pF) and the voltage of the pulses in wild-
type (WT, A and C) and BERKO (B and D) control cells (black circles) and cells
treated (green circles) with 100 nM BPS (A and B) or 1 uM BPS (C and D). The effect
of BPS was measured after 48 h of incubation. The methodology for patch-clamp
recordings of voltage-gated Ca®" currents is the same as the one described in Figure 4.
Data are shown as means = SEM of the number of cells recorded in WT (n=10-15 cells)
and BERKO (n=7-15 cells) mice. These cells were isolated from six mice on at least
three different days: *p<0.05 vs control (one-way ANOVA).
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Figure S3. 1 nM and 100 nM of BPF do not reduce whole-cell Ca?* currents via
ERSB in f-cells. (A and B) Average relationship between Ca** current density (Ca®"
currents in pA normalized to the cell capacitance in pF) and the voltage of the pulses in
wild-type (WT, A and C) and BERKO (B and D) control cells (black circles) and cells
treated (yellow circles) with 1 nM BPF (A and B) or 100 nM BPF (C and D). The
effect of BPF was measured after 48 h of incubation. The methodology for patch-clamp
recordings of voltage-gated Ca®" currents is the same as the one described in Figure 4.
Data are shown as means = SEM of the number of cells recorded in WT (n=13-21 cells)
and BERKO (n=9-23cells) mice. These cells were isolated from six mice on at least
three different days: *p<0.05 vs control (one-way ANOVA).
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Figure S4. Bisphenol FL does not change whole-cell Ca?* currents or Cacnale,
Kcnmal and Scn9a mRNA expression in mouse islets. (A and B) Average
relationship between Ca®" current density (Ca*" currents in pA normalized to the cell
capacitance in pF) and the voltage of the pulses (-60 to +70 mv from a holding potential
of -70 mV, 50 ms duration) in isolated B-cells treated in vitro with vehicle (black
circles) or with 1 nM BPFL (A; red triangles) or 1 uM BPFL (B; red triangles). The
effect of BPFL was measured after 48 h of incubation. Data are shown as means + SEM
of the number of cells recorded in vehicle (n=8-10 cells) and BPFL (n=7-9 cells). These
cells were isolated from six mice on at least three different days (C-E) mRNA
expression of Cacnale (C), Kcnmal (D) and Scn9a (E) was measured in islets from
C57BL/6J mice treated ex vivo with vehicle (white bars) or BPFL (red bars) at 1 nM,
100 nM, and 1 pM for 48 h. mRNA expression was measured by qRT-PCR and
normalized to the housekeeping gene Hprtl, and is shown as fold vs. mean of the
controls. Data are shown as means + SEM of: four to twenty independent samples from

up to twenty islets preparations isolated on at least three different days (one-way
ANOVA).
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Figure SS. Sequence alignment of human, rat and mouse LBD-ERp. (A) Multiple
sequence alignment of human, rat and mouse ERP. A yellow box indicates the region of
the protein corresponding to the LBD and whose structure has been resolved from x-ray
diffraction data. An orange box locates the human Cys-339 that can be palmitoylated.
(B) Secondary structure of the rat ERB-LBD dimer (PDB ID 1HJ1) that includes a 17f-
estradiol molecule in the ligand-binding cavity of each subunit. Monomer A (green)
highlights the different amino acids (spheres, Asn-234, Val-237, Met-242, Gly-266,
Leu-280, Val-296, Ala-369, Ser-370, Asn-372, Glu-374, Glu-376, Thr-382, Val-408,
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Figure S6. Analysis of trajectories for molecular dynamics simulations of LBD-ER
in complex with different ligands. A and C Trajectories (RMSD, A) of the different
ligands initially docked to the main cavity of the open rERB-AH12-LBD dimer. Cavity
1 (c1, A) and cavity 2 (c2, C). B and D Trajectories (RMSD, A) of the different ligands
docked to the closed cavity of the rERB-LBD monomer in the absence (B) or presence
(D) of the SRC co-activating peptide, respectively. The legends included within each
panel indicate the different ligands analyzed.



_ 500 14
:E, # rERE-LBD, monomer+E2 ® @ rERE-LBD, monamer+E2
E 450 ® [ERG-LED, monomer+EPA @ rERN-LED, monomer+BRA
7 [ERE-LBD, monomer+BPF 12 FERP-LBD, monomer+BPF
5.400 ® (ERfi-LED, monomer+BPS @ rER}-LBD, monomer+BPS
&
& 10 ®
E 350
2 300 L) Ty (] oo
£ o0, 8, % *"es o ° o8
£ 560 ) o0 9%y ® ggte® %00, 0* ':. o2e S
B oel® o o ° e 0 e o - 2
s |*ese. % ° . ®s ) ® Sy
Son| e 0% o® o8 a
o ()
g [® 5 '.o.. . LR 0%, %% o
2 o o ® 080 ° e o0, o’®
% 100 e e ® % o e = %
2]
g ° ® 2
S 50
=

0 i -

0 10 20 30 40 50 80 70 80 90 100 0 50 100 150 200 250 300 350 400

C Simulation time, ns D [MM|PBSA] solvation binding energy, Keal/mol
— 500 16
E ® rERp-LBD, monomer+E2SRC ® rER(-LBD, monomer+E2+SRC
% 450 @ rERE-LBD, monomersBPA+SRC 14 @ rERE-LBD, monomer+BPA+SRC
§ rERR-LBD, monomer+BPF+SRC rERE-LBD, monomer+BPF+SRC
400 | @ rERP-LBD, monomer+BPS+SRC ® rER)-LBD, monomer+BPS+SRC
&
@ 350 ®
s ®,
l e e @
2 300
2 et e
£ 250 * .
= Se0 s o, "
= -
3 200 oo Ve »
= L)
S 150 | @® o™ %ege? ©
= LIPS e o
Ho| @ ° % e
£ *le
5 50 L]
=

0

0 10 20 30 40 50 80 70 80 90 100 0 50 100 150 200 250 300 350 400

Simulation time, ns [MM|PBSA] solvation binding energy, Kcal/mol

Figure S7. Calculated MM/PBSA solvation binding energy for bound E2 and
bisphenols to the H12 closed rERB-LBD alone or in the presence of the Src
peptide. (A and C) Calculated MM/PBSA solvation binding energy values of each
ligand attached to LBD cavity alone (A) or in the presence of the Src peptide (C). (B
and D) Frequency distributions of the values shown in (A) and (C), respectively. A
Gaussian curve overlaps discrete data. The legends included within each panel indicate
the different ligands analyzed.



