shaker.umh.es menu
CSS Drop Down Menu by PureCSSMenu.com


Publications → Papers → References

Human p8 is a HMG-like protein with DNA-binding activity enhanced by phosphorylation. Encinar, J.A., Mallo, G.V., Mizyrycki, C., Giono, L., Gonzalez-Ros, J.M., Rico, M., Canepa, E., Moreno, S., Neira, J.L., Iovanna, J.L. (2001) J. Biol. Chem. 276, 2742-2751.


  1. Mallo G. V., Fiedler F., Calvo E. L., Ortiz E. M., Vasseur S., Keim V., Morisset J., Iovanna J. L. (1997) Cloning and Expression of the Rat p8 cDNA, a New Gene Activated in Pancreas during the Acute Phase of Pancreatitis, Pancreatic Development, and Regeneration, and Which Promotes Cellular Growth. J. Biol. Chem. 272:32360–32369.
  2. Vasseur S., Mallo G. V., Fiedler F., Bödecker H., Cánepa E., Moreno S., Iovanna J. L. (1999). Cloning and expression of the human p8, a nuclear protein with mitogenic activity. Eur. J. Biochem. 259:670–675.
  3. Jiang Y. F., Vaccaro M. I., Fiedler F., Calvo E. L., Iovanna J. L. (2000). Lipopolysaccharides induce p8 mRNA expression in vivo and in vitro. Biochem. Biophys. Res. Commun. 260:686–690.
  4. Ree A. H., Tvermyr M., Engebraaten O., Rooman M., Røsok Ø., Hovig E., Meza-Zepeda L. A., Bruland Ø. S., Fodstad Ø. (1999). Expression of a Novel Factor in Human Breast Cancer Cells with Metastatic Potential. Cancer Res. 59:4675–4680.
  5. Ree A. H., Pacheco M. M., Tvermyr M., Fodstad Ø., Brentani M. M. (2000). Expression of a Novel Factor, com1, in Early Tumor Progression of Breast Cancer. Clin. Cancer Res. 6:1778–1783.
  6. Ferrer-Montiel A. V., Montal M. S., Díaz-Muñoz S., Montal M. (1991). Agonist-independent activation of acetylcholine receptor channels by protein kinase A phosphorylation. Proc. Natl. Acad. Sci. U. S. A. 88:10213–10217.
  7. Zurdo J., Sanz J. M., González C., Rico M, Ballesta J. P. G. (1997). The exchangeable yeast ribosomal acidic protein YP2beta shows characteristics of a partly folded state under physiological conditions. Biochemistry 36:9625–9635.
  8. Echabe I., Encinar J. A., Arrondo J. L. R. (1997). Removal of spectral noise in the quantitation of protein structure through infrared band decomposition. Biospectroscopy 3:469–475.
  9. Fernández-Ballester G., Castresana J., Arrondo J. L. R., Ferragut J. A., González-Ros J. M. (1992). Protein stability and interaction of the nicotinic acetylcholine receptor with cholinergic ligands studied by Fourier-transform infrared spectroscopy. Biochem. J. 288:421–426.
  10. Moffat D. J., Mantsch H. H. (1992). Fourier resolution enhancement of infrared spectral data. Methods Enzymol. 210:192–200.
  11. Surewicz W. K., Mantsch H. H., Chapman D. (1993). Determination of protein secondary structure by Fourier transform infrared spectroscopy: A critical assessment. Biochemistry 32:389–394.
  12. Bañuelos S., Arrondo J. L. R., Goñi F. M., Pifat G. (1995). Surface-Core Relationships in Human Low Density Lipoprotein as Studied by Infrared Spectroscopy. J. Biol. Chem. 270:9192–9196.
  13. Moffat D. J., Kaupinnen J. K., Cameron D. G., Mantsch H. H., Jones R. N. (1986). Computer Programs for Infrared Spectroscopy, NHCC Bulletin (National Research Council of Canada, Ottawa, Canada), 18.
  14. Encinar J. A., Fernández A. M., Dasgupta B. R., Ferragut J. A., Montal M., González-Ros J. M., Ferrer-Montiel A. M. (1998). Structural stabilization of botulinum neurotoxins by tyrosine phosphorylation. FEBS Lett. 429:78–82.
  15. Bustin M., Reeves R. (1996). High-Mobility-Group Chromosomal Proteins: Architectural Components That Facilitate Chromatin Function. Prog. Nucleic Acids Res. Mol. Biol. 54:35–100.
  16. Creighton T. (1993) Proteins: Structures and Molecular Properties (W. H. Freeman and Co. New York), 2nd Ed.
  17. Johnson W. C. Jr. (1988). Secondary Structure of Proteins Through Circular Dichroism Spectroscopy. Annu. Rev. Biophys. Biophys. Chem. 17:145–166.
  18. Woody R. W. (1995). Circular dichroism. Methods Enzymol. 246:34–71.
  19. Jackson M., Mantsch H. H. (1995). The use and misuse of FTIR spectroscopy in the determination of protein structure. Crit. Rev. Biochem. Mol. Biol. 30:95–120.
  20. Braiman M. S., Rothschild K. J. (1988). Fourier Transform Infrared Techniques for Probing Membrane Protein Structure. Annu. Rev. Biophys. Biophys. Chem. 17:541–570.
  21. Arrondo J. L. R., Mantsch H. H., Mullner N., Pikula S., Martonosi A. (1987). Infrared spectroscopic characterization of the structural changes connected with the E1----E2 transition in the Ca2+-ATPase of sarcoplasmic reticulum. J. Biol. Chem. 262:9037–9043.
  22. Krimm S., Bandekar J. (1986). Vibrational Spectroscopy and Conformation of Peptides, Polypeptides, and Proteins. Adv. Prot. Chem. 38:181–364.
  23. Allain F. H. T., Yen Y.-M., Masse J. E., Schultze P., Dieckmann T., Johnson R. C., Feigon J. (1999). Solution structure of the HMG protein NHP6A and its interaction with DNA reveals the structural determinants for non-sequence-specific binding. EMBO J. 18:2563–2579.
  24. Wüthrich K. (1986) NMR of Proteins and Nucleic Acids (John Wiley & Sons, New York).
  25. Sánchez-Ruiz J. M., Martínez-Carrión M. (1988). A Fourier-transform infrared spectroscopic study of the phosphoserine residues in hen egg phosvitin and ovalbumin. Biochemistry 27:3338–3342.
  26. Byler D. M., Susi H. (1986). Examination of the secondary structure of proteins by deconvolved FTIR spectra. Biopolymers 25:469–487.
  27. Jones B. E., Dossonet V., Küster E., Hillen W., Deutscher J., Klevit R. E. (1997). Binding of the Catabolite Repressor Protein CcpA to Its DNA Target Is Regulated by Phosphorylation of its Corepressor HPr. J. Biol. Chem. 272:26530–26535.
  28. Buck M. (1998). Trifluoroethanol and colleagues: cosolvents come of age. Recent studies with peptides and proteins. Q. Rev. Biophys. 31:297–355.
  29. Thomas P. D., Dill K. A. (1993). Local and nonlocal interactions in globular proteins and mechanisms of alcohol denaturation. Protein Sci. 2:2050–2065.
  30. Weiss M. A., Ellenberger T., Wobbe C. R., Lee J. P., Harrison S. C., Struhl K. (1990). Folding transition in the DNA-binding domain of GCN4 on specific binding to DNA. Nature 347:575–578.
  31. Wright P. E., Dyson H. J. (1999). Intrinsically unstructured proteins: re-assessing the protein structure-function paradigm. J. Mol. Biol. 293:321–331.
  32. Radhakrishnan I., Pérez-Alvarado G. C., Parker D., Dyson H. J., Montminy M. R., Wright P. E. (1997). Solution Structure of the KIX Domain of CBP Bound to the Transactivation Domain of CREB: A Model for Activator:Coactivator Interactions. Cell 91:741–752.
  33. Chang J-F, Phillips K., Lundbäck T., Gstaiger M., Ladbury J. E., Luisi B. (1999). Oct-1 POU and octamer DNA co-operate to recognise the Bob-1 transcription co-activator via induced folding. J. Mol. Biol. 288:941–952.
  34. Grosschedl R., Giese K., Pagel J. (1994). HMG domain proteins: architectural elements in the assembly of nucleoprotein structures. Trends Genet. 10:94–100.
  35. Calogero S., Grassi F., Aguzzi A., Voigtlander T., Ferrier P., Ferrari S., Bianchi M. E. (1999). The lack of chromosomal protein Hmg1 does not disrupt cell growth but causes lethal hypoglycaemia in newborn mice. Nat. Genet. 22:276–280.
  36. Ohsumi K., Katagiri C., Kishimoto T. (1993). Chromosome condensation in Xenopus mitotic extracts without histone H1. Science 262:2033–2035.
  37. Ge H., Roeder R. G. (1994). The high mobility group protein HMG1 can reversibly inhibit class II gene transcription by interaction with the TATA-binding protein. J. Biol. Chem. 269:17136–17140.
  38. Zappavigna V., Falciola L., Citterich M. H., Mavilio F., Bianchi M. E. (1996). HMG1 interacts with HOX proteins and enhances their DNA binding and transcriptional activation. EMBO J. 15:4981–4991.
  39. Boonyaratanakornkit V., Melvin V., Prendergast P., Altmann M., Ronfani L., Bianchi M. E., Taraseviciene L., Nordeen S. K., Allegretto E. A., Edwards D. P. (1998). High-Mobility Group Chromatin Proteins 1 and 2 Functionally Interact with Steroid Hormone Receptors To Enhance Their DNA Binding In Vitro and Transcriptional Activity in Mammalian Cells. Mol. Cell. Biol. 18:4471–4487.
  40. Sutrias-Grau M., Bianchi M. E., Bernues J. (1999). High Mobility Group Protein 1 Interacts Specifically with the Core Domain of Human TATA Box-binding Protein and Interferes with Transcription Factor IIB within the Pre-initiation Complex. J. Biol. Chem. 274:1628–1634.
  41. Bianchi M. E., Beltrame M. (1998). Flexing DNA: HMG-box proteins and their partners. Am. J. Hum. Genet. 63:1573–1577.