shaker.umh.es menu
CSS Drop Down Menu by PureCSSMenu.com


Publications → Papers → References

Structural and functional modulation of ion channels by specific lipids: from model systems to cell membranes. A. M. Fernández, J. A. Poveda, J. A. Encinar, A. Morales and J. M. González-Ros (2006). Protein lipid-interactions: New approaches and emerging concepts. CR Mateo, Gomez J., Villalain J and Gonzalez-Ros JM Eds. Springer. pp. 203-233. (ISSN:0932-2353).


  1. Akabas MH, Kaufmann C, Archdeacon P, Karlin A (1994) Identification of acetylcholine receptor channel-lining residues in the entire M2 segment of the alpha subunit. Neuron 13:919-927.
  2. Aleu J, Ivorra I, Lejarreta M, González-Ros JM, Morales A, Ferragut JA (1997) Functional incorporation of P-glycoprotein into Xenopus oocyte plasma membrane fails to elicit a swelling-evoked conductance. Biochem Biophys Res Com 237:407-412.
  3. Andreasen TJ, McNamee MG (1980) Inhibition of ion permeability control properties of acetylcholine receptor from Torpedo californica by long-chain fatty acids. Biochemistry 19:4719-4726.
  4. Antollini SS, Soto MA, Bonini de Romanelli I, Gutierrez-Merino C, Sotomayor P, Barrantes FJ (1996) Physical state of bulk and protein-associated lipid in nicotinic acetylcholine receptor-rich membrane studied by laurdan generalized polarization and fluorescence energy transfer. Biophys J 70(3):1275-84.
  5. Anzai K, Takano C, Tanaka K, Kirino Y (1994) Asymmetrical lipid charge changes the subconducting state of the potassium channel from sarcoplasmic reticulum. Biochem Biophys Res Com 199:1081-1087.
  6. Arias HR (1998) Noncompetitive inhibition of nicotinic acetylcholine receptors by endogenous molecules. J Neurosci Res 52:369-379.
  7. Arshava B, Taran I, Xie H, Becker JM, Naider F (2002) High resolution NMR analysis ofthe seven transmembrane domains of a heptahelical receptor in organic-aqueous medium. Biopolymers 64:161-76.
  8. Baenziger JE, Chew JP (1997) Desensitization of the nicotinic acetylcholine receptor mainly involves a structural change in solvent-accessible regions of the polypeptide backbone. Biochemistry 36:3617-3624.
  9. Baenziger JE, Darsaut TE, Morris ML (1999) Internal dynamics of the nicotinic acetylcholine receptor in reconstituted membranes. Biochemistry 38:4905-4911.
  10. Baezinger JE, Morris ML, Darsaut TE (2000) Effect of membrane lipid composition on the con-formational equilibria of the nicotinic acetylcholine receptor. J Biol Chem 275:777-784.
  11. Barrantes FJ (1993) The lipid annulus of the nicotinic acetylcholine receptor as a locus of structural-functional interactions. In: Walts A (ed) Protein-lipid interactions. Elsevier, Amsterdam, pp 231-256.
  12. Barrantes FJ (2003) Modulation of nicotinic acetylcholine receptor function through the outer and middle rings of transmembrane domains. Curr Opin Drug Discov Develop 6:620-632.
  13. Barrantes FJ, Antollini SS, Blanton MP, Prieto M (2000) Topography of nicotinic acetylcholine receptor membrane-embedded domains. J Biol Chem 275:37333-37339.
  14. Bhushan A, McNamee MG (1993) Correlation of phospholipid structure with functional effects on the nicotinic acetylcholine receptor. A modulatory role for phosphatidic acid. Biophys J 64:716-723.
  15. Billah MM, Anthes JC (1990) The regulation and cellular functions of phosphatidylcholine hydrolysis. Biochem J 269:281-291.
  16. Blanton MP, Wang HH (1991) Localization of regions of the Torpedo californica nicotinic acetylcholine receptor labeled with an aryl azide derivative of phosphatidylserine. Biochim Biophys Acta 5(1067):1-8.
  17. Blanton MP, Cohen JB (1994) Identifying the lipid-protein interface of the Torpedonicotinic acetylcholine receptor: secondary structure implications. Biochemistry 33:2859-2872.
  18. Blanton MP, McCardy EA, Huggins A, Parikh D (1998) Probing the structure of the nicotinic acetylcholine receptor with the hydrophobic photoreactive probes [1251]TID-BE and [1251]TIDPC/16. Biochemistry 37:14545-14555.
  19. Blanton MP, Cohen JB (1992) Mapping the lipid-exposed regions in the Torpedo californica nicotinic acetylcholine receptor. Biochemistry 31:3738-3750.
  20. Blanton MP, Wang HH (1990) Photoaffinity labeling of the Torpedo californica nicotinic acetylcholine receptor with an aryl azide derivative of phosphatidylserine. Biochemistry 29:1186-1194.
  21. Bouzat C, Barrantes FJ (1996) Modulation of muscle nicotinic aceylcholine receptors by the glucocorticoid hydrocortisone: possible allosteric mechanism of channel blockade. J Biol Chem 271:25835-25841.
  22. Bouzat C, Roccamo AM, Garbus I, Barrantes FJ (1998) Mutations at lipid-exposed residues of the acetylcholine receptor affect its gating kinetics. Molec Pharmacol 54:146-153.
  23. Brown DA, London E (1997) Structure of detergent-resistant membrane domains: does phase separation occur in biological membranes? Biochem Biophys Res Commun 240:1-7.
  24. Brown DA, London E (1998) Functions of lipid rafts in biological membranes. Ann Rev Cell Dev Biol 14:111-136.
  25. Brown DA, London E (2000) Structure and function of sphingolipid- and cholesterol-rich membrane rafts. J Biol Chem 275:17221-17224.
  26. Bruses JL, Chauvet N, Rutishauser U (2001) Membrane lipid rafts are necessary for the mainte-nance of the (alpha)7 nicotinic acetylcholine receptor in somatic spines of ciliary neurons. J Neurosci 21:504-512.
  27. Buller AL, White M (1990) Altered patterns of N-linked glycosylation ofthe Torpedo acetylcholine receptor expressed in Xenopus oocytes. J Membrane Biol 115:179-189.
  28. Butler DH, McNamee MG (1993) FTIR analysis of nicotinic acetylcholine receptor secondary structure in reconstituted membranes. Biochim Biophys Acta 1150:17-24.
  29. Caldironi HA, ALonso TS (1996) Lipidic characterization of full-grown amphibian oocytes and their plasma membrane-enriched fractions. Lipids 31:651-656.
  30. Canti C, Bodas E, Marsal J, Solsona C (1998) Tacrine and physostigmine block nicotinic receptors in Xenopus oocytes injected with Torpedo electroplaque membranes. Eur J Pharmacol 363:197-202.
  31. Cantor, RS (1997) Lateral pressures in cell membranes: a mechanism for modulation of protein function. J Phys Chem 101:1323-1325.
  32. Castresana J, Fernandez-Ballester G, Fernandez AM, Laynez JL, Arrondo JL, Ferragut JA, JM Gonzalez-Ros (1992) Protein structural effects of agonist binding to the nicotinic acetylcholine receptor. FEBS Lett 314:171-175.
  33. Chang G, Spencer RH, Lee AT, Barclay MT, Rees DC (1998) Structure of the MscL homolog from Mycobacterium tuberculosis: a gated mechanosensitive ion channel. Science 282:2220-2226.
  34. Changeux JP (1990) The nicotinic acetylcholine receptor: an allosteric protein prototype of ligand-gated ion channels. Trends Pharmacol Sci 11:485-492.
  35. Chiara DC, Dangott LJ, Eckenhoff RG, Cohen JB (2003) Idendtification of nicotinic aceylcholine receptor amino acids photolabeled by the volatile anesthetic halothane. Biochemistry 42:13457-13467.
  36. Corbin J, Methot N, Wang HH, Baenziger JE, Blanton MP (1998) Secondary structure analysis of individual transmembrane segments of the nicotinic acetylcholine receptor by circular dichroism and Fourier transform infrared spectroscopy. J Biol Chem 273:771-777.
  37. Corbin J, Wang HH, Blanton MP (1998) Identifying the cholesterol binding domain in the nicotinic acetylcholine receptor with [125 nazido-cholesterol. Biochim Biophys Acta 1414:65-74.
  38. Cordes FS, Bright JN, Sansom MS (2002) Proline-induced distortions of transmembrane helices. J Mol Biol 323:951-960.
  39. Criado, M, Eib H, Barrantes FJ (1984) Functional properties of the acetylcholine receptor incorporated in model lipid membranes Differential effects of chain length and head group of phospholipids on receptor affinity states and receptor-mediated ion translocation. J Biol Chem 259:9188-9198.
  40. Cruz-Martin A, Mercado JL, Rojas LV, McNamee MG, Lasalde-Dominicci JA (2001) Tryptophan substitutions at lipid-exposed positions of the gamma M3 transmembrane domain increase the macroscopic ionic current response of the Torpedo californica nicotinic acetylcholine receptor. J Membr Biol 183:61-70.
  41. Curtis L, Buisson B, Bertrand S, Bertrand D (2002) Potentiation of human alpha4beta2 neuronal nicotinic acetylcholine receptor by estradiol. Molec Pharmacol 61:127-135.
  42. daCosta CJ, Ogrel AA, McCardy EA, Blanton MP, Baenziger JE (2002) Lipid-protein interactions at the nicotinic acetylcholine receptor A functional coupling between nicotinic receptors and phosphatidic acid-containing lipid bilayers. J Biol Chem 277:201-208.
  43. daCosta CJ, Wagg ID, McKay ME, Baenziger JE (2004) Phosphatidic acid and phosphatidylserine have distinct structural and functional interactions with the nicotinic acetylcholine receptor. J Biol Chem 279:14967-14974.
  44. de Kruijff B (1997) Lipid polymorphism and biomembrane function. Curr Opin Chem Biol 1:564-9.
  45. de Planque MR, Bonev BB, Demmers JA, Greathouse DV, Koeppe RE 2nd, Separovic F, Watts A, Killian JA (2003) Interfacial anchor properties of tryptophan residues in transmembrane peptides can dominate over hydrophobic matching effects in peptide-lipid interactions. Biochemistry 42:5341-5348.
  46. de Planque MR, Goormaghtigh E, Greathouse DV, Koeppe RE 2nd, Kruijtzer JA, Liskamp RM, de Kruijff B, Killian JA (2001) Sensitivity of single membrane-spanning alpha-helical peptides to hydrophobic mismatch with a lipid bilayer: effects on backbone structure, orientation, and extent of membrane incorporation. Biochemistry 40:5000-5010.
  47. Denisov G, Wanaski S, Luan P, Glaser M, McLaugh lin S (1998) Binding of basic peptides to mem-branes produces lateral domains enriched in the acidic lipids phosphatidylserine and phosphatidylinositol 4,5-bisphosphate: an electrostatic model and experimental results. Biophys J 74:731-744.
  48. Dowhan W (1997) Molecular basis for membrane phospholipid diversity: why are there so many lipids? Annu Rev Biochem 66:199-232.
  49. Doyle DA (2004) Structural changes during ion channel gating. Trends Neurosci (6):298-302.
  50. Doyle DA, Morais Cabral J, Pfuetzner RA, Kuo A, Gulbis JM, Cohen SL, Chait BT, MacKinnon R (1998) The structure of the potassium channel: molecular basis of K+ conduction and selectivity. Science 280:69-77.
  51. Dreger M, Krauss M, Herrmann A, Hucho F (1997) Interactions of the nicotinic acetylcholine receptor transmembrane segments with the lipid bilayer in native receptor-rich membranes. Biochemistry 36:839-847.
  52. East JM, Melville D, Lee AG (1985) Exchange rates and numbers ofannu lar lipids for the calcium and magnesium ion dependent adenosinetriphosphatase. Biochemistry 24:2615-2623.
  53. Ellena JF, Blazing MA, McNamee MG (1983) Lipid-protein interactions in reconstituted membranes containing acetylcholine receptor. Biochemistry 22:5523-3555.
  54. Esmann M, Marsh D (1985) Spin-label studies on the origin of the specificity of lipid-protein interactions in Na+,K+-ATPase membranes from Squalus acanthias. Biochemistry 24:3572-3578.
  55. Exton JH (1990) Signalling through phosphatidylcholine breakdown. J Biol Chem 265:1-4.
  56. Fernandez AM, Fernandez-Ballester G, Ferragut JA, Gonzalez-Ros JM (1993) Labeling of the nicotinic acetylcholine receptor by a photoactivatable steroid probe: effects of cholesterol and cholinergic ligands. Biochim Biophys Acta 1149:135-144.
  57. Fernandez-Ballester G, Castresana J, Fernandez AM, Arrondo JL, Ferragut JA, Gonzalez-Ros JM (1994) A role for cholesterol as a structural effector ofthe nicotinic acetylcholine receptor. Biochemistry 33:4065-4071.
  58. Finer-Moore J, Strooud RM (1984) Amphipathic analysis and possible formation of the ion channel in an acetylcholine receptor. Proc Nati Acad Sci USA 81:155-159.
  59. Fong TM, McNamee MG (1986) Correlation between acetylcholine receptor function and structural properties of membranes. Biochemistry 25:830-40.
  60. Fong TM, McNamee MG (1987) Stabilization of acetylcholine receptor secondary structure by cholesterol and negatively charged phospholipids in membranes. Biochemistry 26:3871-3880.
  61. Forman SA (1999) A hydrophobic photolabel inhibits nicotinic acetylcholine receptors via open-channel block following a slow step. Biochemistry 38:14559-14564.
  62. Galzi JL, Edelstein SJ, Changeux JP (1996) The multiple phenotypes of allosteric receptor mutants. Proc Nati Acad Sci USA 93:1853-1858.
  63. Garbus I, Bouzat C, Barrantes FJ (2001) Steroids differentially inhibit the nicotinic aceylcholine receptor. Neuro Report 12:227-231.
  64. Garidel P, Johann C, Blume A (1997) Nonideal mixing and phase separation in phosphatidylcholine-phosphatidic acid mixtures as a function of acyl chain length and pH. Biophys J 72:2196-2210.
  65. Gentry CL, Lukas R (2001) Local anesthetics noncompetitively inhibit function of four distinct nicotinic acetylcholine receptor subtypes. J Pharmacol Exp Ther 299:1038-1048.
  66. Gonzalez-Ros JM, Llanillo M, Paraschos A, Martinez-Carrion M (1982) Lipid environment of acetylcholine receptor from Torpedo californica. Biochemistry 21:3467-3474.
  67. Gonzalez-Ros JM, Paraschos A, Martinez-Carrion M (1980) Reconstitution of functional membrane-bound acetylcholine receptor from isolated Torpedo californica receptor protein and electroplax lipids. Proc Nat Acad Sci USA 77(4):1796-1800.
  68. Guzman GR, Santiago J, Ricardo A, Marti-Arbona R, Rojas LV, Lasaide-Dominicci JA (2003) Tryptophan scanning mutagenesis in the alphaM3 transmembrane domain of the Torpedo californica acetylcholine receptor: functional and structural implications. Biochemistry 42:12243-50.
  69. Harder T, Scheiffele P, Verkade P, Simons K (1998) Lipid domain structure of the plasma membrane revealed by patching of membrane components. J Cell Biol 141:929-942.
  70. Harder T, Simons K (1997) Caveolae, DIGs, and the dynamics ofsphingolipid-cholesterol micro-domains. Curr Opin Cell Biol 9:534-542.
  71. Heginbotham L, Kolmakova-Partensky L, Miller C (1998) Functional reconstitution of a prokaryotic K+ channel. J Gen Physiol 111:741-749.
  72. Hogg RC, Raggenbass M, Bertand D (2003) Nicotinic acetylcholine receptors: from structure to brain function. Rev Physiol Biochem Pharmacol 147:1-46.
  73. Hol WG, van Duijnen PT, Berendsen HJ (1978) The alpha-helix dipole and the properties of proteins. Nature 273:443-446.
  74. Hvidt A, Nielsen SO (1966) Hydrogen exchange in proteins. Adv Protein Chem 21:287-386.
  75. Ivorra I, Fernandez A, Gal B, Aleu J, Gonzalez-Ros JM, Ferragut JA, Morales A (2002) Protein orientation affects the efficiency of functional protein transplantation into the Xenopus oocyte membrane. J Membrane Biol 185:117-127.
  76. Jones OT, Eubanks JH, Earnest JP, McNamee MG (1988) A minimum number of lipids are required to support the functional properties of the nicotinic acetylcholine receptor. Biochemistry 27:3733-3742.
  77. Jones OT, McNamee MG (1988) Annular and nonannular binding sites for cholesterol associated with the nicotinic acetylcholine receptor. Biochemistry 27:2364-2374.
  78. Karlin A (2002) Emerging structure of the nicotinic acetylcholine receptor. Nat Rev Neurosci 3:102-114.
  79. Karlin A, Cox RN, Dipaola M, Holtzman E, Kao PN, Lobel P, Wang L, Yodh N (1986) Functional domains of the nicotinic acetylcholine receptor. Ann NY Acad Sci 463:53-69.
  80. Kash TL, Jenkins A, Kelley JC, Trudell JR, Harrison NL (2003) Coupling of agonist binding to channel gating in the GABA(A) receptor. Nature 421:272-5.
  81. Katz B, Miledi R (1975) The effect of procaine on the action of acetylcholine at the neuromuscular junction. J Physiol 249:269-284.
  82. Ke L, Lukas RJ (1996) Effects of steroid exposure on ligand binding and functional activities of diverse nicotinic acetylcholine receptor subtypes. J Neurochem 67:1100-1112.
  83. Kuo A, Gu Ibis JM, AntcliffJF, Rahman T, Lowe ED, Zimmer J, Cuthbertson J, Ashcroft FM, Ezaki T, Doyle DA (2003) Crystal structure ofthe potassium channel KirBac11 in the closed state. Science 300:1922-1926.
  84. Latorre R, Labarca P, Naranjo D (1992) Surface charge effects on ion conduction in ion channels. Methods Enzymol 207:471-501.
  85. Le Cahrec F, Bron P, Verbavatz JM, Garret A, Morel G, Cavalier A, Bonnec G, Thomas D, Gouranton J, Hubert JF (1996) Incorporation of proteins into (Xenopus) oocytes by proteoliposome microinjection: functional characterization of a novel aquaporin. J Cell Sci 109:1285-1295.
  86. Lee AG (1998) How lipids interact with an intrinsic membrane protein: the case of the calcium pump. Biochim Biophys Acta 1376:381-390.
  87. Lee AG (2003) Lipid-protein interactions in biological membranes: a structural perspective. Biochim Biophys Acta 1612:1-40.
  88. Lee AG (2004) How lipids affect the activities of integral membrane proteins. Biochim Biophys Acta 3:1666:62-87.
  89. Liu LP, Deber CM (1997) Anionic phospholipids modulate peptide insertion into membranes. Biochemistry 36(18):5476-5482.
  90. Liu Y, Dilger JP, Vidal AM (1994) Effects of alcohols and volatile anaesthetics on the activation of nicotinic acetylcholine receptor channels. Mol Pharmacol 45:1235-1241.
  91. Luan P,Yang L, Glaser M (1995) Formation of membrane domains created during the budding of vesicular stomatitis virus. A model for selective lipid and protein sorting in bioiog ical membranes. Biochemistry 34:9874-83.
  92. Lugovskoy AA, Maslennikov IV, Utkin YN, Tsetlin VI, Cohen JB, Arseniev AS (1998) Spatial structure of the M3 transmembrane segment of the nicotinic acetylcholine receptor alpha subunit. EurJ Biochem 255:455-461.
  93. Lundbaek JA, Birn P, Hansen AJ, Sogaard R, Nielsen C, Girshman J, Bruno MJ, Tape SE, Egebjerg J, Greathouse DV, Mattice GL, Koeppe II RE, Andersen OS (2004) Regulation of sodium channel function by bilayer elasticity: the importance of hydrophobic coupling. Effects of micelle-forming amphiphiles and cholesterol. J Gen Physiol 121:599-621.
  94. MacKinnon R (2003) Potassium channels. FEBS Lett 555:62-65.
  95. Marheineke K, Grunewald S, Christie W, Reilander H (1998) Lipid composition of Spodoptera frugiperda (Sf9) and Trichoplusia ni (Tn) insect cells used for baculovirus infection. FEBS Lett 441:49-52.
  96. Marsal J, Tigy G, Miledi R (1995) Incorporation of acetylcholine receptors and Cl-channels in Xenopus oocytes injected with Torpedo electroplaque membranes. Proc Nati Acad Sci USA 92:5224-5228.
  97. Marsh D, Barrantes FJ (1978) Immobilized lipid in acetylcholine receptor-rich membranes from Torpedo marmorata. Proc Nat Acad Sci USA 73:4329-4333.
  98. Marsh D, Horvath LI (1998) Structure, dynamics and composition of the lipid-protein interface perspectives from spin-labelling. Biochim Biophys Acta 1376:267-296.
  99. Marsh D, Pali T (2004) The protein-lipid interface: perspectives from magnetic resonance and crystal structures. Biochim Biophys Acta 1666:118-141.
  100. Marsh D, Pellkofer R, Hoffmann-Bleihauer P, Sandhoff K (1982) Incorporation of lipids into cellular membranes -- a spin-label assay. Anal Biochem 122:206-212.
  101. Marsh D, Watts A, Barrantes FJ (1981) Phospholipid chain immobilization and steroid rotational immobilization in acetylcholine receptor-rich membranes from Torpedo marmorata. Biochim Biophys Acta 645:97-101.
  102. Martens JR, Kwak YG, Tamkun MM (1999) Modulation of Kv channel alpha/beta subunit interactions. Trends Cardiovasc Med 8:253-258.
  103. Martens JR, Navarro-Polanco R, Coppock EA, Nishiyama A, Parshley L, Grobaski TD, Tamkum MM (2000) Differential targeting of shaker-like potassium channels to lipid rafts. J Biol Chem 275:7443-7446.
  104. Martinac B, Hamill OP (2002) Gramicidin A channels switch between stretch activation and stretch inactivation depending on bilayer thickness. Proc Nat Acad Sci USA 99:4308-4312.
  105. Maxfield FR (2002) Plasma membrana microdomains. Curr Opin Cell Biol 14:483-487.
  106. Methot N, McCarthy MP, Baenziger JE (1994) Secondary structure of the nicotinic acetylcholine receptor: implications for structural models of a ligand-gated ion channel. Biochemistry 33:7709-7717.
  107. Mielke DL, Wallace BA (1988) Secondary structural analyses of the nicotinic acetylcholine receptor as a test of molecular models. J Biol Chem 263(7):3177-3182.
  108. Miledi R, Dueñas Z, Martinez-Torres A, Kawas CH, Eusebi F (2004) Microtranspiantation of functional receptors and channels from the Alzheimer's brain to frog oocytes. Proc Nat Acad Sci USA 101:1760-1763.
  109. Miledi R, Eusebi F, Martínez-Torres A, Palma E, Trettel F (2002) Expression of functional neu-rotransmitter receptors in Xenopus oocytes after injection of human brain membranes. Proc Nat. Acad Sci USA 99:13238-13242.
  110. Miledi R, Parker I, Sumikawa K(1989) Transplanting receptors from brains into oocytes. In: Fidia Research Foundation Neuroscience Award Lectures 3, pp 57-90, Rayen Press, New York.
  111. Miller AJ, Zhou JJ (2000) Xenopus oocytes as an expression system for plant transporters. Biochim Biophys Acta 1465:343-358.
  112. Miyazawa A, Fujiyoshi Y, Unwin N (2003) Structure and gating mechan ism of the acetylcholine receptor pore. Nature 423:949-955.
  113. Moore WM, Holliday LA, Puett D, Brady RN (1974) On the conformation of the acetylcholine receptor protein from Torpedo nobiliana. FEBS Lett 45:145-149.
  114. Morales A, Aleu J, Ivorra I, Ferragut JA, González-Ros JM, Miledi R (1995) Incorporation of re-constituted acetylcholine receptors from Torpedo into the Xenopus oocyte membrane. Proc Nat Acad Sci USA 92:8468-8472.
  115. Neher E, Steinbach H (1978) Local anaesthetics transiently block currents through single acetylcholine-receptor channels. J Physiol 277:153-176.
  116. Nurowska E, Ruzzier F (1996) Corticosterone modifies the murine muscle acetylcholine receptor channel kinetics. Neuro Report 8:77-80.
  117. Ochoa EL, A Chattopadhyay, MG McNamee (1989) Desensitization of the nicotinic acetylcholine receptor: molecular mechan isms and effect of moduiators. Cell Mol Neurobiol 9:141-178.
  118. Oliver D, Lien CC, Soom M, Baukrowitz T, Jonas P, Fakler B (2004) Functional conversion between A-type and delayed rectifier K+ channels by membrane lipids. Science 304:265-270.
  119. Olivera S, Ivorra I, Morales A (2005) The acetylcholinesterase inhibitor BW284c51 is a potent blocker of Torpedo nicotinic AchRs incorporated into the Xenopus oocyte membrane. Br J Pharmacol 144(1):88-97.
  120. Opekarov M, Tanner W(2003) Specific lipid requirements of membrane proteins - a putative bottleneck in heterologous expression. Biochim Biophys Acta 1610:11-22.
  121. Opella SJ, Marassi FM, Gesell JJ, Valente AP, Kim Y, Oblatt-Montal M, Montal M (1999) Structures of the M2 channel-lining segments from nicotinic acetylcholine and NMDA receptors by NMR spectroscopy. Nat Struct Biol 4:374-379.
  122. Ortiz-Acevedo A, Meiendez M, Asseo AM, Biaggi N, Rojas LV, Lasaide-Dominicci JA (2004) Tryptophan scanning mutagenesis of the gammaM4 transmembrane domain of the acetylcholine receptor from Torpedo californica. J Biol Chem 279:42250-42257.
  123. Paas Y, Cartaud J, Recouvreur M, Grailhe R, Dufresne V, Pebay-Peyroula E, Landau EM, Changeux JP (2003) Electron microscopic evidence for nucleation and growth of 3D acetylcholine receptor microcrystals in structured lipid-detergent matrices. Proc Nat Acad Sci USA 100:11309-11314.
  124. Palma E, Trettel F, Fucile S, Renzi M, Miledi R, Eusebi F (2003) Microtransplantation of membranes from cultured cells to Xenopus oocytes: A method to study neurotransmitter receptors embedded in native lipids. Proc Nat Acad Sci USA 100:2896-2900.
  125. Palsdottir H, Hunte C (2004) Lipids in membrane protein structures. Biochim Biophys Acta 1666:2-18.
  126. Paradiso K, Sabey K, Evers AS, Zormski CF, Covey DF, Steinbach JH (2000) Steroid in hibition of rat neuronal nicotinic alpha4beta2 receptors experessed in HEK 293 cells. Mol Pharmacol 58:341-351.
  127. Paradiso K, Zhang J, Steinbach JH (2001) The C terminus of the human nicotinic alpha4beta2 receptor forms a binding site required for potentiation by an estrogenic steroid. J Neurosci 21:6561-6568.
  128. Pashkov VS, Maslennikov IV, Tchikin LD, Efremov RG, Ivanov VT, Arseniev AS (1999) Spatial structure of the M2 transmembrane segment of the nicotinic acetylcholine receptor alpha-subunit. FEBS Lett 45:117-121.
  129. Pebay-Peyroula E, Rosenbusch JP (2001) High-resolution structures and dynamics of membrane protein-lipid complexes: a critique. Curr Opin Struct Biol 11:427-432.
  130. Perozo E, Cortes DM, Somporspisut P, Kloda A, Martinac B (2002) Open channel structure of MscL and gating mechanism of mechanosensitive channels. Nature 418:942-948.
  131. Pershina L, Hvidt A (1974) A study by the hydrogen-exchange method of the complex formed between the basic pancreatic trypsin in hibitor and trypsin. Eur J Biochem 48:339-344.
  132. Polozova A, Litman BJ (2000) Cholesterol dependent recruitment of di22:6-PC by a G protein-coupled receptor into lateral domains. Biophys J 79:2632-4263.
  133. Poveda JA, Encinar JA, Fernandez AM, Mateo CR, Ferragut JA, Gonzalez-Ros JM (2002) Segregation of phosphatidic acid-rich domains in reconstituted acetylcholine receptor membranes. Biochemistry 41:12253-12262.
  134. Powl AM, East JM, Lee AG (2005) Heterogeneity in the binding of lipid molecu les to the surface of a membrane protein: hot spots for anionic lipids on the mechanosensitive channel of large conductance MscL and effects on conformation. Biochemistry 44:5873-5883.
  135. Revah F, Bertrand D, Galzi JL, Devillers-Thiery A, Mulle C, Hussy N, Bertrands S, Ballivet M, Changeux JP (1991) Mutations in the channel domain alter desensitization of a neuronal nicotinic receptor. Nature 353:846-849.
  136. Revah F, Galzi JL, Giraudat J, Haumont PY, Lederer F, Changeux JP (1990) The noncompetitive blocker [3H]chlorpromazine labels three amino acids of the acetylcholine receptor gamma subunit: implications for the alpha-helical organization of regions MII and for the structure of the ion channel. Proc Natl Acad Sci USA 87:4675-4679.
  137. Sackmann E (1984) Physical basis for trigger processes and membrane structures. In: Chapman D (ed) Biological membranes, Vol. 5, Academic Press, London, pp 105-143.
  138. Sali D, Bycroft M, Fersht AR (1988) Stabilization of protein structure by interaction of alphahelix dipole with a charged side chain. Nature 335:740-743
  139. Sanna E, Motzo C, Usala M, Pau D, Cagetti E, Biggio G (1998) Functional changes in rat nigral GABAA receptors induced by degeneration of the striatonigral GABAergic pathway: an electrophysiological study of receptors incorporated into Xenopus oocytes. J Neurochem 70:2539-2544.
  140. Sansom MS, Shrivastava IH, Bright JN, Tate J, Capener CE, Biggin PC (2002) Potassium channels: structures, models, simulations. Biochim Biophys Acta 1565(2):294-307.
  141. Santiago J, Guzmán GR, Rojas LV, Madi R, Asmar-Rovira GA, Santana LF, McNamee M, Lasalde-Dominicci JA (2001) Probing the effects of membrane cholesterol in the Torpedo californica acetylcholine receptor and the novel lipid-exposed mutation C418W in Xenopus oocytes. J Biol Chem 276:46523-46532.
  142. Santiago J, Guzman GR, Torruellas K, Rojas LV, Lasalde-Dominicci JA (2004) Tryptophan scanning mutagenesis in the TM3 domain of the Torpedo californica acetylcholine receptor beta subunit reveals an alpha-helical structure. Biochemistry 43:10064-10070.
  143. Schlegel A, Volonte D, Engelman JA, Galbiati F, Mehta P, Zhang XL, Scherer PE, Lisanti MP (1998) Crowded little caves: structure and function of caveolae. Cell Signal 10:457-463.
  144. Shogomori H, Brown DA (2003) Use of detergents to study membrane rafts: the good, the bad, and the ugly. Biol Chem 384:1259-1263.
  145. Simmonds AC, East JM, Jones OT, Rooney EK, McWhirter J, Lee AG (1982) Annular and non-annular binding sites on the (Ca2++Mg2+)-ATPase. Biochim Biophys Acta 693 398-406.
  146. Simons K, Ikonen E (1997) Functional rafts in cell membranes. Nature 387:569-572.
  147. Simons K, Toomre D (2000) Lipid rafts and signal transduction. Nat Rev Mol Cell Biol 1:31-39.
  148. Singer S, Nicolson GL (1972) The fluid mosaic model of cell membranes. Science 172:720-730.
  149. Sivilotti LG, Mcneil DK, Lewis TM, Nassar MA, Schoepfer R, Colquhoun D (1997) Recombinant nicotinic receptors, expressed in Xenopus oocytes, do not resemble native rat sympathetic ganglion receptors in single-channel behaviour. J Physiol 500:123-138.
  150. Soreq H, Seidman S (1992) Xenopus oocyte microinjection: from gene to protein. Meth Enzymol 207:225-265.
  151. Starace DM, Bezanilla F (2004) A proton pore in a potassium channel voltage sensor reveals a focused electric field. Nature 427:548-553.
  152. Stith BJ, Hall J, Ayres P, Waggoner L, Moore JD, Shaw WA (2000) Quantification of majar classes of Xenopus phospholipids by high performance liquid chromatography with evaporative light scattering detection. J Lipid Res 41:1448-1454.
  153. Su kharev S, Betanzos M, Chiang CS, Guy HR (2001) The gating mechanism of the large mech-anosensitive channel MscL. Nature 409:720-724.
  154. Sunshine C, McNamee MG (1992) Lipid modulation of nicotinic acetylcholine receptor function: the role of neutral and negatively charged lipids. Biochim Biophys Acta 1108:240-246.
  155. Sunshine C, McNamee MG (1994) Lipid modulation of nicotinic acetylcholine receptor function: the role of membrane lipid composition and fluidity. Biochim Biophys Acta 1191:59-64.
  156. Tamamizu S, Guzman GR, Santiago J, Rojas LV, McNamee MG, Lasalde-Dominicci JA (2000) Functional effects of periodic tryptophan substitutions in the alpha M4 transmembrane domain of the Torpedo californica nicotinic acetylcholine receptor. Biochemistry 39:4666-4673.
  157. Tillman TS, Cascio M (2003) Effects of membrane lipids on ion channel structure and function. Cell Biochem Biophys 38:161-190.
  158. Toyoshima C, Unwin N (1998) Ion channel of acetylcholine receptor reconstructed from images of postsynaptic membranes. Nature 336:247-250.
  159. Turnheim K, Gruber J, Cristoph W, Ruiz Gutierrez V (1999) Membrane phospholipids composition affects function of potassium channels from rabit colon epithelium. Am Phys Soc 277:83-90.
  160. Unwin N (1993) Nicotinic acetylcholine receptor at 9 A resolution. J Mol Biol 229:1101-1124.
  161. Unwin N (1995) Acetylcholine receptor channel imaged in the open state. Nature 373:37-43.
  162. Unwin N (2003) Structure and action of the nicotinic acetylcholine receptor explored by electron microscopy. FEBS Lett 555:91-95.
  163. Valera S, Ballivet M, Bertrand D (1992) Progesterone modulates a neuronal nicotinic acetylcholine receptor. Proc Nati Acad Sci USA 89:9949-9953.
  164. Valiyaveetil FI, Zhou Y, Mackinnon R (2002) Lipids in the structure, folding and function of the KcsA K+ channel. Biochemistry 41:10771-10777.
  165. van den Brink-van der Laan E, Killian JA, de Kruijff B (2004) Nonbilayer lipids affect peripheral and integral membrane proteins via changes in the lateral pressure profile. Biochim Biophys Acta 1666:275-288.
  166. Villar MT, Artigues A, Ferragut JA, Gonzalez-Ros JM (1988) Phospholipase A2 hydrolysis of membrane phospholipids causes structural alteration of the nicotinic acetylcholine receptor. Biochim Biophys Acta 938:35-43.
  167. Wenz JJ, Barrantes FJ (2005) Nicotinic acetylcholine receptor induces lateral segregation of phosphatidic acid and phosphatidylcholine in reconstituted membranes. Biochemistry 44(1):398-410.
  168. White BH, Cohen JB (1992) Agonist-induced changes in the structure of the acetylcholine receptor M2 regions revealed by photoincorporation of an uncharged nicotinic non-competitive antagonist. J Biol Chem 267:15770-15783.
  169. Williamson IM, Alvis SM, East JM, Lee AG (2002) Interactions of phospholipids with the potassium channel KcsA. Biophys J 83:2026-2038.
  170. Williamson PT, Meier BH, Watts A (2004) Structural and functional studies of the nicotinic acetylcholine receptor by solid-state NMR. Eur Biophys J 33(3):247-254.
  171. Wu L, Bauer CS, Zhen XG, Xie C, Yang J (2002) Dual regulation of voltage-gated calcium channels by PtdIns(4,5)P2. Nature 419:947-952.
  172. Yager P, Chang EL, Williams RW, Dalziel AW (1984) The secondary structure of acetylcholine receptor reconstituted in a single lipid component as determined by Raman spectroscopy. Biophys J 45:26-28.
  173. Zhang H, Karlin A (1997) Identification of acetylcholine receptor channel-lining residues in the M1 segment ofthe beta-subunit. Biochemistry 36:15856-15864.
  174. Zhou Y, Morals-Cabral JH, Kaufman A, Mackinnon R (2001) Chemistry of ion coordination and hydration revealed by a K+ channel-Fab complex at 2.0 A resolution. Nature 414:43-48.