shaker.umh.es menu
CSS Drop Down Menu by PureCSSMenu.com


Publications → Papers → References

Binding of 5'-methylthioadenosine and S-adenosyl-L-methionine to protein MJ0100 triggers an open-to-close conformational change in its CBS motif pair. M. Lucas, J. A. Encinar, I. Oyenarte, I. Gómez García, E. Astigarraga Arribas, D. Kortazar, J. A. Fernández, J. M. Mato, M. L. Martínez-Chantar and Luis A. Martínez-Cruz. 2010. J. Mol. Biol. 396(3): 800-820.


  1. Bateman A. The structure of a domain common to archaebacteria and the homocystinuria disease protein. Trends Biochem. Sci., 22 (1997), pp. 12-13.
  2. Sintchak M.D., Fleming M.A., Futer O., Raybuck S.A., Chambers S.P., Caron P.R., et al. Structure and mechanism of inosine monophosphate dehydrogenase in complex with the immunosuppressant mycophenolic acid. Cell, 85 (1996), pp. 921-930.
  3. Zhang R., Evans G., Rotella F.J., Westbrook E.M., Beno D., Huberman E., et al. Characteristics and crystal structure of bacterial inosine-5'-monophosphate dehydrogenase. Biochemistry, 38 (1999), pp. 4691-4700.
  4. Shan X., Dunbrack R.L. Jr., Christopher S.A., Kruger W.D. Mutations in the regulatory domain of cystathionine beta synthase can functionally suppress patient-derived mutations in cis. Hum. Mol. Genet., 10 (2001), pp. 635-643.
  5. Bowne S.J., Sullivan L.S., Blanton S.H., Cepko C.L., Blackshaw S., Birch D.G., et al. Mutations in the inosine monophosphate dehydrogenase 1 gene (IMPDH1) cause the RP10 form of autosomal dominant retinitis pigmentosa. Hum. Mol. Genet., 11 (2002), pp. 559-568.
  6. Pusch M. Myotonia caused by mutations in the muscle chloride channel gene CLCN1. Hum. Mutat., 19 (2002), pp. 423-434.
  7. Haug K., Warnstedt M., Alekov A.K., Sander T., Ramírez A., Poser B., et al. Mutations in CLCN2 encoding a voltage-gated chloride channel are associated with idiopathic generalized epilepsies. Nat. Genet., 33 (2003), pp. 527-532.
  8. Konrad M., Vollmer M., Lemmink H.H., van den Heuvel L.P., Jeck N., Vargas-Poussou R., et al. Mutations in the chloride channel gene CLCNKB as a cause of classic Bartter syndrome. J. Am. Soc. Nephrol., 11 (2000), pp. 1449-1459.
  9. Cleiren E., Bénichou O., Van Hul E., Gram J., Bollerslev J., Singer F.R., et al. Albers–Schönberg disease (autosomal dominant osteopetrosis, type II) results from mutations in the ClCN7 chloride channel gene. Hum. Mol. Genet., 10 (2001), pp. 2861-2867.
  10. Blair E., Redwood C., Ashrafian H., Oliveira M., Broxholme J., Kerr B., et al. Mutations in the gamma(2) subunit of AMP-activated protein kinase cause familial hypertrophic cardiomyopathy: evidence for the central role of energy compromise in disease pathogenesis. Hum. Mol. Genet., 10 (2001), pp. 1215-1220.
  11. Ignoul S., Eggermont J. CBS domains: structure, function, and pathology in human proteins. Am. J. Physiol.: Cell Physiol., 289 (2005), pp. C1369-1378.
  12. Scott J.W., Hawley S.A., Green K.A., Anis M., Stewart G., Scullion G.A., et al. CBS domains form energy-sensing modules whose binding of adenosine ligands is disrupted by disease mutations. J. Clin. Invest., 113 (2004), pp. 274-284.
  13. Estévez R., Schroeder B.C., Accardi A., Jentsch T.J., Pusch M. Conservation of chloride channel structure revealed by an inhibitor binding site in ClC-1. Neuron, 38 (2003), pp. 47-59.
  14. King N.P., Lee T.M., Sawaya M.R., Cascio D., Yeates T.O. Structures and functional implications of an AMP-binding cystathionine beta-synthase domain protein from a hyperthermophilic archaeon. J. Mol. Biol., 380 (2008), pp. 181-192.
  15. Meyer S., Dutzler R. Crystal structure of the cytoplasmic domain of the chloride channel ClC-0. Structure, 14 (2006), pp. 299-307.
  16. Meyer S., Savaresi S., Forster I.C., Dutzler R. Nucleotide recognition by the cytoplasmic domain of the human chloride transporter ClC-5. Nat. Struct. Mol. Biol., 14 (2007), pp. 60-67.
  17. Markovic S., Dutzler R. The structure of the cytoplasmic domain of the chloride channel ClC-Ka reveals a conserved interaction interface. Structure, 15 (2007), pp. 715-725.
  18. Day P., Sharff A., Parra L., Cleasby A., Williams M., Hörer S., et al. Structure of a CBS-domain pair from the regulatory gamma1 subunit of human AMPK in complex with AMP and ZMP. Acta Crystallogr., Sect. D: Biol. Crystallogr., 63 (2007), pp. 587-596.
  19. Amodeo G.A., Rudolph M.J., Tong L. Crystal structure of the heterotrimer core of Saccharomyces cerevisiae AMPK homologue SNF1. Nature, 449 (2007), pp. 492-495.
  20. Jin X., Townley R., Shapiro L. Structural insight into AMPK regulation: ADP comes into play. Structure, 15 (2007), pp. 1285-1295.
  21. Rudolph M.J., Amodeo G.A., Iram S.H., Hong S.P., Pirino G., Carlson M., Tong L. Structure of the Bateman2 domain of yeast Snf4: dimeric association and relevance for AMP binding. Structure, 15 (2007), pp. 65-74.
  22. Townley R., Shapiro L. Crystal structures of the adenylate sensor from fission yeast AMP-activated protein kinase. Science, 315 (2007), pp. 1726-1729.
  23. Xiao B., Heath R., Saiu P., Leiper F.C., Leone P., Jing C., et al. Structural basis for AMP binding to mammalian AMP-activated protein kinase. Nature, 449 (2007), pp. 496-500.
  24. Hattori M., Tanaka Y., Fukai S., Ishitani R., Nureki O. Crystal structure of the MgtE Mg2+ transporter. Nature, 448 (2007), pp. 1072-1075.
  25. Mahmood N.A., Biemans-Oldehinkel E., Poolman B. Engineering of ion sensing by the CBS module of the ABC transporter OpuA. J. Biol. Chem., 284 (2009), pp. 14368-14376.
  26. Cheung P.C., Salt I.P., Davies S.P., Hardie D.G., Carling D. Characterization of AMP-activated protein kinase gamma-subunit isoforms and their role in AMP binding. Biochem. J., 346 (2000), pp. 659-669.
  27. Finkelstein J.D., Kyle W.E., Martin J.L., Pick A.M. Activation of cystathionine synthase by adenosylmethionine and adenosylethionine. Biochem. Biophys. Res. Commun., 66 (1975), pp. 81-87.
  28. Pimkin M., Markham G.D. The CBS subdomain of inosine 5'-monophosphate dehydrogenase regulates purine nucleotide turnover. Mol. Microbiol., 68 (2008), pp. 342-359.
  29. Ishitani R., Sugita Y., Dohmae N., Furuya N., Hattori M., Nureki O. Mg2+-sensing mechanism of Mg2+ transporter MgtE probed by molecular dynamics study. Proc. Natl Acad. Sci. USA, 105 (2008), pp. 15393-15398.
  30. Martínez-Cruz L.A., Encinar J.A., Kortazar D., Prieto J., Gómez J., Fernández-Millán P., et al. The CBS domain protein MJ0729 of Methanocaldococcus jannaschii is a thermostable protein with a pH-dependent self-oligomerization. Biochemistry, 48 (2009), pp. 2760-2776.
  31. Bult C.J., White O., Olsen G.J., Zhou L., Fleischmann R.D., Sutton G.G., et al. Complete genome sequence of the methanogenic archaeon, Methanococcus jannaschii. Science, 273 (1996), pp. 1058-1073.
  32. Lucas M., Kortazar D., Astigarraga E., Fernández J.A., Mato J.M., Martínez-Chantar M.L., Martínez-Cruz L.A. Purification, crystallization and preliminary X-ray diffraction analysis of the CBS-domain pair from the Methanococcus jannaschii protein MJ0100. Acta Crystallogr., Sect. F: Struct. Biol. Cryst. Commun., 64 (2008), pp. 936-941.
  33. Larkin M.A., Blackshields G., Brown N.P., Chenna R., McGettigan P.A., McWilliam H., et al. Clustal W and Clustal X version 2.0 Bioinformatics, 23 (2007), pp. 2947-2948.
  34. Arnold K., Bordoli L., Kopp J., Schwede T. The SWISS-MODEL Workspace: a web-based environment for protein structure homology modelling. Bioinformatics, 22 (2006), pp. 195-201.
  35. Kelley L.A., Sternberg M.J.E. Protein structure prediction on the web: a case study using the Phyre server. Nat. Protoc., 4 (2009), pp. 363-371.
  36. Proudfoot M., Sanders S.A., Singer A., Zhang R., Brown G., Binkowski A., et al. Biochemical and structural characterization of a novel family of cystathionine beta-synthase domain proteins fused to a Zn ribbon-like domain. J. Mol. Biol., 375 (2008), pp. 301-315.
  37. Ragunathan P., Kumarevel T., Agari Y., Shinkai A., Kuramitsu S., Yokoyama S., Ponnuraj K. Crystal structure of ST2348, a CBS domain protein, from hyperthermophilic archaeon Sulfolobus tokodaii. Biochem. Biophys. Res. Commun., 375 (2008), pp. 124-128.
  38. Holm L., Sander C. DALI: a network tool for protein structure comparison. Trends Biochem. Sci., 20 (1995), pp. 478-480.
  39. Sharpe M.L., Gao C., Kendall S.L., Baker E.N., Lott J.S. The structure and unusual protein chemistry of hypoxic response protein 1, a latency antigen and highly expressed member of the DosR regulon in Mycobacterium tuberculosis. J. Mol. Biol., 383 (2008), pp. 822-836.
  40. Berezin C., Glaser F., Rosenberg J., Paz I., Pupko T., Fariselli P., et al. ConSeq: the identification of functionally and structurally important residues in protein sequences. Bioinformatics, 20 (2004), pp. 1322-1324.
  41. Schubert H.L., Blumenthal R.M., Cheng X. Many paths to methyltransfer: a chronicle of convergence. Trends Biochem. Sci., 28 (2003), pp. 329-335.
  42. Meier M., Janosik M., Kery V., Kraus J.P., Burkhard P. Structure of human cystathionine beta-synthase: a unique pyridoxal 5'-phosphate-dependent heme protein. EMBO J., 20 (2001), pp. 3910-3916.
  43. Mudd S.H., Levy H.L., Kraus J.P. Disorders of transsulfuration. C.R. Scriver, A.L. Beaudet, W.S. Sly, D. Valle, B. Childs, K.W. Kinzler, B. Vogelstein (Eds.), The Metabolic and Molecular Bases of Inherited Disease, vol. 1, McGraw-Hill, New York, NY (2001), pp. 2007-2056.
  44. Kitabatake M., So M.W., Tumbula D.L., Soll D. Cysteine biosynthesis pathway in the archaeon Methanosarcina barkeri encoded by acquired bacterial genes? J. Bacteriol., 182 (2000), pp. 143-145.
  45. Sauerwald A., Zhu W., Major T.A., Roy H., Palioura S., Jahn D., et al. RNA-dependent cysteine biosynthesis in archaea. Science, 307 (2005), pp. 1969-1972.
  46. Gobom J., Mueller M., Egelhofer V., Theiss D., Lehrach H., Nordhoff E. A calibration method that simplifies and improves accurate determination of peptide molecular masses by MALDI-TOF MS. Anal. Chem., 74 (2002), pp. 3915-3923.
  47. Otwinowski Z., Minor W. Processing of X-ray diffraction data collected in oscillation mode. C.W. Carter, R.M. Sweet (Eds.), Methods in Enzymology, Vol. 276: Macromolecular Crystallography, part A, Academic Press, New York, NY (1997), pp. 307-326.
  48. Cowtan K. Joint CCP4 and ESF-EACBM Newsletter on Protein Crystallography, 31 (1994), pp. 34-38.
  49. Matthews B.W. Solvent content of protein crystals. J. Mol. Biol., 33 (1968), pp. 491-497.
  50. Terwilliger T.C. SOLVE and RESOLVE: automated structure solution and density modification. Methods Enzymol., 374 (2003), pp. 22-36.
  51. Jones T.A., Zou J.Y., Cowan S.W., Kjeldgaard M. Improved methods for the building of protein models in electron density maps and the location of errors in these models. Acta Crystallogr., Sect. A: Found. Crystallogr., 47 (1991), pp. 110-119.
  52. Emsley P., Cowtan K. Coot: model-building tools for molecular graphics. Acta Crystallogr., Sect. D: Biol. Crystallogr., 60 (2004), pp. 2126-2132.
  53. Brunger A.T., Adams P.D., Clore G.M., Gros P., Grosse-Kunstleve R.W., Jiang J.S., et al. Crystallography & NMR System (CNS), a new software suite for macromolecular structure determination. Acta Crystallogr., Sect. D: Biol. Crystallogr., 54 (1998), pp. 905-921.
  54. Vagin A., Teplyakov A. MOLREP: an automated program for molecular replacement. J. Appl. Crystallogr., 30 (1997), pp. 1022-1025.
  55. Vagin A.A., Steiner R.S., Lebedev A.A., Potterton L., McNicholas S., Long F., Murshudov G.N. REFMAC5 dictionary: organisation of prior chemical knowledge and guidelines for its use. Acta Crystallogr., Sect. D: Biol. Crystallogr., 60 (2004), pp. 2284-2295.
  56. Laskowski R.A., Moss D.S., Thornton J.M. Main-chain bond lengths and bond angles in protein structures. J. Mol. Biol., 231 (1993), pp. 1049-1067.
  57. Willard L., Ranjan A., Zhang H., Monzavi H., Boyko R.F., Sykes B.D., Wishart D.S. VADAR: a web server for quantitative evaluation of protein structure quality. Nucleic Acids Res., 31 (2003), pp. 3316-3319.
  58. Pettifer S., Wolstencroft K., Alper P., Attwood T., Coletta A., Goble C., et al. myGrid and UTOPIA: an integrated approach to enacting and visualising in silico experiments in the life sciences. Lect. Notes Bioinformatics (2007).
  59. Krissinel E., Henrick K. Inference of macromolecular assemblies from crystalline state. J. Mol. Biol., 372 (2007), pp. 774-797.
  60. Jensen L.J., Kuhn M., Stark M., Chaffron S., Creevey C., Muller J., et al. STRING 8—a global view on proteins and their functional interactions in 630 organisms. Nucleic Acids Res., 37 (2009), pp. D412-416