CSS Drop Down Menu by

Publications → Papers → References

Lipid modulation of ion channels through specific binding sites. Poveda JA, Giudici A.M., Renart L., Molina M.L, Montoya E., Fernández A.M., Fernández-Ballester G., Encinar, J.A., González-Ros J.M. 2014. Biochim Biophys Acta. 1838(6):1560-1567.

  1. F.M. Ashcroft, From molecule to malady, Nature 440 (2006) 440-447.
  2. B. Hille, Ionic Channels of Excitable Membranes, Sinauer Associates, 1992.
  3. Channelopathies, Elsevier, 2000.
  4. O.S. Andersen, R.E. Koeppe, Bilayer thickness and membrane protein function: an energetic perspective, Annu. Rev. Biophys. Biomol. Struct. 36 (2007) 107-130.
  5. A.G. Lee, How lipids affect the activities of integral membrane proteins, Biochim. Biophys. Acta 1666 (2004) 62-87.
  6. D. Marsh, Protein modulation of lipids, and viceversa, in membranes, Biochim. Biophys. Acta 1778 (2008) 1545-1575.
  7. O.P. Hamill, B. Martinac, Molecular basis of mechanotransduction in living cells, Physiol. Rev. 81 (2001) 685-740.
  8. R. Phillips, T. Ursell, P. Wiggins, P. Sens, Emerging roles for lipids in shaping membrane-protein function, Nature 459 (2009) 379-385.
  9. Y. Xu, Y. Ramu, Z. Lu, Removal of phospho-head groups of membrane lipids immobilizes voltage sensors of K+ channels, Nature 451 (2008) 826-829.
  10. S.B. Long, X. Tao, E.B. Campbell, R. MacKinnon, Atomic structure of a voltage-dependent K+ channel in a lipid membrane-like environment, Nature 450 (2007) 376-382.
  11. M. Milescu, F. Bosmans, S. Lee, A.A. Alabi, J.I. Kim, K.J. Swartz, Interactions between lipids and voltage sensor paddles detected with tarantula toxins, Nat. Struct. Mol. Biol. 16 (2009) 1080-1085.
  12. D. Schmidt, Q.X. Jiang, R. MacKinnon, Phospholipids and the origin of cationic gating charges in voltage sensors, Nature 444 (2006) 775-779.
  13. H. Zheng, W. Liu, L.Y. Anderson, Q.X. Jiang, Lipid-dependent gating of a voltage-gated potassium channel, Nat. Commun. 2 (2011) 1-9.
  14. C. Moreno, A. Macias, A. Prieto, A. De La Cruz, C. Valenzuela, Polyunsaturated fatty acids modify the gating of kv channels, Front. Pharmacol. 3 (2012) 163.
  15. M. Guizy, C. Arias, M. David, T. Gonzalez, C. Valenzuela, {Omega}-3 and {omega}-6 polyunsaturated fatty acids block HERG channels, Am. J. Physiol. Cell Physiol. 289 (2005) C1251-C1260.
  16. D. Oliver, C.C. Lien, M. Soom, T. Baukrowitz, P. Jonas, B. Fakler, Functional conversion between A-type and delayed recti?er K+ channels by membrane lipids, Science 304 (2004) 265-270.
  17. H. Meves, Arachidonic acid and ion channels: an update, Br. J. Pharmacol. 155 (2008) 4-16.
  18. P.V. Gutla, A. Boccaccio, A.A. De, F. Gambale, A. Carpaneto, Modulation of plant TPC channels by polyunsaturated fatty acids, J. Exp. Bot. 63 (2012) 6187-6197.
  19. L.M. Boland, M.M. Drzewiecki, Polyunsaturated fatty acid modulation of voltage-gated ion channels, Cell Biochem. Biophys. 52 (2008) 59-84.
  20. A.M. Powl, J.M. East, A.G. Lee, Anionic phospholipids affect the rate and extent of ?ux through the mechanosensitive channel of large conductance MscL, Biochemistry 47 (2008) 4317-4328.
  21. T. Balla, Phosphoinositides: tiny lipids with giant impact on cell regulation, Physiol. Rev. 93 (2013) 1019-1137.
  22. F.S. Choveau, F. Abderemane-Ali, F.C. Coyan, Z. Es-Salah-Lamoureux, I. Baro, G. Loussouarn, Opposite effects of the S4-S5 linker and PIP(2) on voltage-gated channel function: KCNQ1/KCNE1 and other channels, Front. Pharmacol. 3 (2012) 125.
  23. D.W. Hilgemann, S. Feng, C. Nasuhoglu, The complex and intriguing lives of PIP2 with ion channels and transporters, Sci. STKE 2001 (2001) 1-8.
  24. A.A. Rodriguez-Menchaca, S.K. Adney, L. Zhou, D.E. Logothetis, Dual regulation of voltage-sensitive ion channels by PIP(2), Front. Pharmacol. 3 (2012) 1-7.
  25. X. Zhang, X. Chen, C. Jia, X. Geng, X. Du, H. Zhang, Depolarization increases phosphatidylinositol (PI) 4,5-bisphosphate level and KCNQ currents through PI 4-kinase mechanisms, J. Biol. Chem. 285 (2010) 9402-9409.
  26. D. Enkvetchakul, G. Loussouarn, E. Makhina, S.L. Shyng, C.G. Nichols, The kinetic and physical basis of K(ATP) channel gating: toward a uni?ed molecular understanding, Biophys. J. 78 (2000) 2334-2348.
  27. A.M. Dopico, A.N. Bukiya, A.K. Singh, Large conductance, calcium- and voltage-gated potassium (BK) channels: regulation by cholesterol, Pharmacol. Ther. 135 (2012) 133-150.
  28. L. Mlayeh, S. Chatkaew, M. Leonetti, F. Homble, Modulation of plant mitochondrial VDAC by phytosterols, Biophys. J. 99 (2010) 2097-2106.
  29. C. Dart, Lipid microdomains and the regulation of ion channel function, J. Physiol. 588 (2010) 3169-3178.
  30. G. Brannigan, J. Henin, R. Law, R. Eckenhoff, M.L. Klein, Embedded cholesterol in the nicotinic acetylcholine receptor, Proc. Natl. Acad. Sci. U. S. A. 105 (2008) 14418-14423.
  31. M.H. Cheng, Y. Xu, P. Tang, Anionic lipid and cholesterol interactions with alpha4beta2 nAChR: insights from MD simulations, J. Phys. Chem. B 113 (2009) 6964-6970.
  32. A.M. Fernandez-Carvajal, J.A. Encinar, J.A. Poveda, J.E. de, J. Martinez-Pinna, I. Ivorra, J.A. Ferragut, A. Morales, J.M. Gonzalez-Ros, Structural and functional changes induced in the nicotinic acetylcholine receptor by membrane phospholipids, J. Mol. Neurosci. 30 (2006) 121-124.
  33. A. Morales, J.E. de, A.M. Fernandez-Carvajal, J. Martinez-Pinna, J.A. Poveda, J.A. Encinar, I. Ivorra, J.M. Gonzalez-Ros, Nicotinic acetylcholine receptor properties are modulated by surrounding lipids: an in vivo study, J. Mol. Neurosci. 30 (2006) 5-6.
  34. J.A. Poveda, J.A. Encinar, A.M. Fernandez, C.R. Mateo, J.A. Ferragut, J.M. Gonzalez-Ros, Segregation of phosphatidic acid-rich domains in reconstituted acetylcholine receptor membranes, Biochemistry 41 (2002) 12253-12262.
  35. V.G. Romanenko, G.H. Rothblat, I. Levitan, Modulation of endothelial inward-rectifier K+ current by optical isomers of cholesterol, Biophys. J. 83 (2002) 3211-3222.
  36. Y. Epshtein, A.P. Chopra, A. Rosenhouse-Dantsker, G.B. Kowalsky, D.E. Logothetis, I. Levitan, Identification of a C-terminus domain critical for the sensitivity of Kir2.1 to cholesterol, Proc. Natl. Acad. Sci. U. S. A. 106 (2009) 8055-8060.
  37. L.L. Wittmer, Y. Hu, M. Kalkbrenner, A.S. Evers, C.F. Zorumski, D.F. Covey, Enantioselectivity of steroid-induced gamma-aminobutyric acid A receptor modulation and anesthesia, Mol. Pharmacol. 50 (1996) 1581-1586.
  38. F.J. Barrantes, Structural basis for lipid modulation of nicotinic acetylcholine receptor function, Brain Res. Brain Res. Rev. 47 (2004) 71-95.
  39. A.M. Hosie, M.E. Wilkins, T.G. Smart, Neurosteroid binding sites on GABA(A) receptors, Pharmacol. Ther. 116 (2007) 7-19.
  40. A.K. Singh, J. McMillan, A.N. Bukiya, B. Burton, A.L. Parrill, A.M. Dopico, Multiple cholesterol recognition/interaction amino acid consensus (CRAC) motifs in cytosolic C tail of Slo1 subunit determine cholesterol sensitivity of Ca2+- and voltage-gated K+ (BK) channels, J. Biol. Chem. 287 (2012) 20509-20521.
  41. A.K. Hamouda, D.C. Chiara, D. Sauls, J.B. Cohen, M.P. Blanton, Cholesterol interacts with transmembrane alpha-helices M1, M3, and M4 of the Torpedo nicotinic acetylcholine receptor: photolabeling studies using [3H]azicholesterol, Biochemistry 45 (2006) 976-986.
  42. P. Hakizimana, M. Masureel, B. Gbaguidi, J.M. Ruysschaert, C. Govaerts, Interactions between phosphatidylethanolamine headgroup and LmrP, a multidrug transporter: a conserved mechanism for proton gradient sensing? J. Biol. Chem. 283 (2008) 9369-9376.
  43. H. Palsdottir, C. Hunte, Lipids in membrane protein structure, Biochim. Biophys. Acta. 1666 (2004) 2-18.
  44. O. Soubias, W.E. Teague Jr., K.G. Hines, D.C. Mitchell, K. Gawrisch, Contribution of membrane elastic energy to rhodopsin function, Biophys. J. 99 (2010) 817-824.
  45. R.G. Anderson, K. Jacobson, A role for lipid shells in targeting proteins to caveolae, rafts, and other lipid domains, Science 296 (2002) 1821-1825.
  46. A.M. Powl, J.M. East, A.G. Lee, Importance of direct interactions with lipids for the function of the mechanosensitive channel MscL, Biochemistry 47 (2008) 12175-12184.
  47. Y. Krause, S. Krause, J. Huang, C.H. Liu, R.C. Hardie, M. Weckstrom, Light-dependent modulation of Shab channels via phosphoinositide depletion in Drosophila photoreceptors, Neuron 59 (2008) 596-607.
  48. M.L. Roberts-Crowley, T. Mitra-Ganguli, L. Liu, A.R. Rittenhouse, Regulation of voltage-gated Ca2+ channels by lipids, Cell Calcium 45 (2009) 589-601.
  49. A.A. Rodriguez-Menchaca, S.K. Adney, Q.Y. Tang, X.Y. Meng, A. Rosenhouse-Dantsker, M. Cui, D.E. Logothetis, PIP2 controls voltage-sensor movement and pore opening of Kv channels through the S4-S5 linker, Proc. Natl. Acad. Sci. U. S. A. 109 (2012) E2399-E2408.
  50. B.C. Suh, B. Hille, PIP2 is a necessary cofactor for ion channel function: how and why? Annu. Rev. Biophys. 37 (2008) 175-195.
  51. B.C. Suh, K. Leal, B. Hille, Modulation of high-voltage activated Ca(2 +) channels by membrane phosphatidylinositol 4,5-bisphosphate, Neuron 67 (2010) 224-238.
  52. Y. Li, M.A. Zaydman, D. Wu, J. Shi, M. Guan, B. Virgin-Downey, J. Cui, KCNE1 enhances phosphatidylinositol 4,5-bisphosphate (PIP2) sensitivity of IKs to modulate channel activity, Proc. Natl. Acad. Sci. U. S. A. 108 (2011) 9095-9100.
  53. S.B. Hansen, X. Tao, R. MacKinnon, Structural basis of PIP2 activation of the classical inward rectifier K+ channel Kir2.2, Nature 477 (2011) 495-498.
  54. M.R. Whorton, R. MacKinnon, X-ray structure of the mammalian GIRK2-betagamma G-protein complex, Nature 498 (2013) 190-197.
  55. A.G. Lee, Lipid-protein interactions in biological membranes: a structural perspective, Biochim. Biophys. Acta 1612 (2003) 1-40.
  56. D.A. Doyle, C.J. Morais, R.A. Pfuetzner, A. Kuo, J.M. Gulbis, S.L. Cohen, B.T. Chait, R. MacKinnon, The structure of the potassium channel: molecular basis of K+ conduction and selectivity, Science 280 (1998) 69-77.
  57. R. Blunck, J.F. Cordero-Morales, L.G. Cuello, E. Perozo, F. Bezanilla, Detection of the opening of the bundle crossing in KcsA with fluorescence lifetime spectroscopy reveals the existence of two gates for ion conduction, J. Gen. Physiol. 128 (2006) 569-581.
  58. L. Heginbotham, L. Kolmakova-Partensky, C. Miller, Functional reconstitution of a prokaryotic K+ channel, J. Gen. Physiol. 111 (1998) 741-749.
  59. F.I. Valiyaveetil, Y. Zhou, R. MacKinnon, Lipids in the structure, folding, and function of the KcsA K+ channel, Biochemistry 41 (2002) 10771-10777.
  60. J.A. Encinar, M.L. Molina, J.A. Poveda, F.N. Barrera, M.L. Renart, A.M. Fernandez, J.M. Gonzalez-Ros, The influence of a membrane environment on the structure and stability of a prokaryotic potassium channel, KcsA, FEBS Lett. 579 (2005) 5199-5204.
  61. D.A. van, S. Hegger, J.A. Killian, K.B. de, Influence of lipids on membrane assembly and stability of the potassium channel KcsA, FEBS Lett. 525 (2002) 33-38.
  62. F.N. Barrera, M.L. Renart, J.A. Poveda, K.B. de, J.A. Killian, J.M. Gonzalez-Ros, Protein self-assembly and lipid binding in the folding of the potassium channel KcsA, Biochemistry 47 (2008) 2123-2133.
  63. P. Marius, S.J. Alvis, J.M. East, A.G. Lee, The interfacial lipid binding site on the potas- sium channel KcsA is specific for anionic phospholipids, Biophys. J. 89 (2005) 4081-4089.
  64. M. Raja, The potassium channel KcsA: a model protein in studying membrane protein oligomerization and stability of oligomeric assembly? Arch. Biochem. Biophys. 510 (2011) 1-10.
  65. M. Iwamoto, S. Oiki, Amphipathic antenna of an inward rectifier K+ channel responds to changes in the inner membrane leaflet, Proc. Natl. Acad. Sci. U. S. A. 110 (2013) 749-754.
  66. Y. Zhou, J.H. Morais-Cabral, A. Kaufman, R. MacKinnon, Chemistry of ion coordination and hydration revealed by a K+ channel-Fab complex at 2.0 Å resolution, Nature 414 (2001) 43-48.
  67. I. Triano, F.N. Barrera, M.L. Renart, M.L. Molina, G. Fernandez-Ballester, J.A. Poveda, A.M. Fernandez, J.A. Encinar, A.V. Ferrer-Montiel, D. Otzen, J.M. Gonzalez-Ros, Occupancy of nonannular lipid binding sites on KcsA greatly increases the stability of the tetrameric protein, Biochemistry 49 (2010) 5397-5404.
  68. M. Weingarth, A. Prokofyev, E.A. van der Cruijsen, D. Nand, A.M. Bonvin, O. Pongs, M. Baldus, Structural determinants of specific lipid binding to potassium channels, J. Am. Chem. Soc. 135 (2013) 3983-3988.
  69. P. Marius, M.R. de Planque, P.T. Williamson, Probing the interaction of lipids with the non-annular binding sites of the potassium channel KcsA by magic-angle spinning NMR, Biochim. Biophys. Acta 1818 (2012) 90-96.
  70. S.J. Alvis, I.M. Williamson, J.M. East, A.G. Lee, Interactions of anionic phospholipids and phosphatidylethanolamine with the potassium channel KcsA, Biophys. J. 85 (2003) 3828-3838.
  71. S.S. Deol, C. Domene, P.J. Bond, M.S. Sansom, Anionic phospholipid interactions with the potassium channel KcsA: simulation studies, Biophys. J. 90 (2006) 822-830.
  72. P. Marius, M. Zagnoni, M.E. Sandison, J.M. East, H. Morgan, A.G. Lee, Binding of anionic lipids to at least three nonannular sites on the potassium channel KcsA is required for channel opening, Biophys. J. 94 (2008) 1689-1698.
  73. M. Raja, R.E. Spelbrink, K.B. de, J.A. Killian, Phosphatidic acid plays a special role in stabilizing and folding of the tetrameric potassium channel KcsA, FEBS Lett. 581 (2007) 5715-5722.
  74. E.C.E. Kremer, The Influence of Lipids on a Potassium Channel-KcsA Unraveled, Bijvoet Center for Biomolecular Research, University of Utrecht, 2010.
  75. D. Meuser, H. Splitt, R. Wagner, H. Schrempf, Exploring the open pore of the potassium channel from Streptomyces lividans, FEBS Lett. 462 (1999) 447-452.
  76. H. Schrempf, O. Schmidt, R. Kummerlen, S. Hinnah, D. Muller, M. Betzler, T. Steinkamp, R. Wagner, A prokaryotic potassium ion channel with two predicted transmembrane segments from Streptomyces lividans, EMBO J. 14 (1995) 5170-5178.
  77. H. Splitt, D. Meuser, I. Borovok, M. Betzler, H. Schrempf, Pore mutations affecting tetrameric assembly and functioning of the potassium channel KcsA from Streptomyces lividans, FEBS Lett. 472 (2000) 83-87.
  78. L. Heginbotham, M. LeMasurier, L. Kolmakova-Partensky, C. Miller, Single Streptomyces lividans K(+) channels: functional asymmetries and sidedness of proton activation, J. Gen. Physiol. 114 (1999) 551-560.
  79. M. LeMasurier, L. Heginbotham, C. Miller, KcsA: it's a potassium channel, J. Gen. Physiol. 118 (2001) 303-314.
  80. S. Chakrapani, J.F. Cordero-Morales, E. Perozo, A quantitative description of KcsA gating II: single-channel currents, J. Gen. Physiol. 130 (2007) 479-496.
  81. M.L. Molina, F.N. Barrera, A.M. Fernandez, J.A. Poveda, M.L. Renart, J.A. Encinar, G. Riquelme, J.M. Gonzalez-Ros, Clustering and coupled gating modulate the activity in KcsA, a potassium channel model, J. Biol. Chem. 281 (2006) 18837-18848.
  82. A.M. Giudici, M.L. Molina, J.L. Ayala, E. Montoya, M.L. Renart, A.M. Fernandez, J.A. Encinar, A.V. Ferrer-Montiel, J.A. Poveda, J.M. Gonzalez-Ros, Detergent-labile, supramolecular assemblies of KcsA: relative abundance and interactions involved, Biochim. Biophys. Acta 1828 (2013) 193-200.
  83. J. Hegermann, J. Overbeck, H. Schrempf, In vivo monitoring of the potassium channel KcsA in Streptomyces lividans hyphae using immuno-electron microscopy and energy-?ltering transmission electron microscopy, Microbiology 152 (2006) 2831-2841.
  84. Y. Jiang, A. Lee, J. Chen, M. Cadene, B.T. Chait, R. MacKinnon, Crystal structure and mechanism of a calcium-gated potassium channel, Nature 417 (2002) 515-522.
  85. Y. Cao, X. Jin, H. Huang, M.G. Derebe, E.J. Levin, V. Kabaleeswaran, Y. Pan, M. Punta, J. Love, J. Weng, M. Quick, S. Ye, B. Kloss, R. Bruni, E. Martinez-Hackert, W.A. Hendrickson, B. Rost, J.A. Javitch, K.R. Rajashankar, Y. Jiang, M. Zhou, Crystal structure of a potassium ion transporter, TrkH, Nature 471 (2011) 336-340.
  86. M.L. Molina, A.M. Giudici, J.A. Poveda, G. Fernández-Ballester, E. Montoya, M.L. Renart, A. Fernández-Carvajal, A. Morales, A. Ferrer-Montiel, J.M. González-Ros, Competing Lipid-Protein and Protein-Protein Interactions Determine Clustering and Gating Patterns in the Potassium Channel KcsA, 2013. (in preparation).
  87. H. Schindler, F. Spillecke, E. Neumann, Different channel properties of Torpedo acetylcholine receptor monomers and dimers reconstituted in planar membranes, Proc. Natl. Acad. Sci. U. S. A. 81 (1984) 6222-6226.
  88. A.V. Botelho, T. Huber, T.P. Sakmar, M.F. Brown, Curvature and hydrophobic forces drive oligomerization and modulate activity of rhodopsin in membranes, Biophys. J. 91 (2006) 4464-4477.
  89. R.L. Goforth, A.K. Chi, D.V. Greathouse, L.L. Providence, R.E. Koeppe, O.S. Andersen, Hydrophobic coupling of lipid bilayer energetics to channel function, J. Gen. Physiol. 121 (2003) 477-493.
  90. F. Kilic, G. Rudnick, Oligomerization of serotonin transporter and its functional consequences, Proc. Natl. Acad. Sci. U. S. A. 97 (2000) 3106-3111.
  91. S.O. Marx, K. Ondrias, A.R. Marks, Coupled gating between individual skeletal muscle Ca2+ release channels (ryanodine receptors), Science 281 (1998) 818-821.
  92. A.I. Undrovinas, I.A. Fleidervish, J.C. Makielski, Inward sodium current at resting potentials in single cardiac myocytes induced by the ischemic metabolite lysophosphatidylcholine, Circ. Res. 71 (1992) 1231-1241.
  93. S.L. Grage, A.M. Keleshian, T. Turdzeladze, A.R. Battle, W.C. Tay, R.P. May, S.A. Holt, S. A. Contera, M. Haertlein, M. Moulin, P. Pal, P.R. Rohde, V.T. Forsyth, A. Watts, K.C. Huang, A.S. Ulrich, B. Martinac, Bilayer-mediated clustering and functional interaction of MscL channels, Biophys. J. 100 (2011) 1252-1260.
  94. D. Bray, M.D. Levin, C.J. Morton-Firth, Receptor clustering as a cellular mechanism to control sensitivity, Nature 393 (1998) 85-88.
  95. M.L. Skoge, R.G. Endres, N.S. Wingreen, Receptor-receptor coupling in bacterial chemotaxis: evidence for strongly coupled clusters, Biophys. J. 90 (2006) 4317-4326.
  96. M. Huang, M. Volgushev, F. Wolf, A small fraction of strongly cooperative sodium channels boosts neuronal encoding of high frequencies, PLoS One 7 (2012) e37629.
  97. N.S. Mueller, R. Wedlich-Soldner, F. Spira, From mosaic to patchwork: matching lipids and proteins in membrane organization, Mol. Membr. Biol. 29 (2012) 186-196.