CSS Drop Down Menu by

Publications → Papers → References

Nucleotide binding triggers a conformational change of the CBS module of the magnesium transporter CNNM2 from a twisted towards a flat structure. Corral-Rodríguez, M.A., Stuiver, M., Abascal-Palacios, G., Diercks, T., Oyenarte, I., Ereño-Orbea, J., Ibáñez De Opakua, A., Blanco, F.J., Encinar, J.A., Spiwok, V., Terashima, H., Accardi, A., Müller, D., Martinez-Cruz LA. 2014. Biochem J. 464:23-34.

  1. Swaminathan, R. (2003) Magnesium metabolism and its disorders. Clin. Biochem. Rev. 24, 47-66.
  2. Jahnen-Dechent, W. and Ketteler, M. (2012) Magnesium basics. Clin. Kidney J. 5 (Suppl. 1), i3-i14.
  3. Quamme, G. A. (2010) Molecular identification of ancient and modern mammalian magnesium transporters. Am. J. Physiol. Cell Physiol. 298, C407-C429.
  4. Günther T. (1993) Mechanisms and regulation of Mg2+ efflux and Mg2+ influx. J. Miner. Electrolyte Metab. 19, 259-265.
  5. Cefaratti, C., Romani, A. and Scarpa, A. (2000) Differential localization and operation of distinct Mg2+ transporters in apical and basolateral sides of rat liver plasma membrane. J. Biol. Chem. 275, 3772-3780.
  6. Romani, A. M. and Scarpa, A. (2000) Regulation of cellular magnesium. Front. Biosci. 5, D720-D374.
  7. Tashiro, M., Konishi, M., Iwamoto, T., Shigekawa, M. and Kurihara, S. (2000) Transport of magnesium by two isoforms of the Na+-Ca2+ exchanger expressed in CCL39 fibroblasts. Pflugers Arch. 440, 819-827.
  8. Watanabe, M., Konishi, M., Ohkido, I. and Matsufuji, S. (2005) Enhanced sodium-dependent extrusion of magnesium in mutant cells established from a mouse renal tubular cell line. Am. J. Physiol. Renal Physiol. 289, F742-F748.
  9. Schweigel, M., Kolisek, M., Nikolic, Z. and Kuzinski, J. (2008) Expression and functional activity of the Na/Mg exchanger, TRPM7 and MagT1 are changed to regulate Mg homeostasis and transport in rumen epithelial cells. Magnes. Res. 21, 118-123.
  10. Eshaghi, S., Niegowski, D., Kohl, A., Martinez Molina, D., Lesley, S. A. and Nordlund, P. (2006) Crystal structure of a divalent metal ion transporter CorA at 2.9 angstrom resolution. Science 313, 354-357.
  11. Sponder, G., Svidova, S., Schweigel, M., Vormann, J. and Kolisek, M. (2010) Splice-variant 1 of the ancient domain protein 2 (ACDP2) complements the magnesium-deficient growth phenotype of Salmonella enterica sv. typhimurium strain MM281. Magnes. Res. 23, 105-114.
  12. Li, F. Y., Chaigne-Delalande, B., Kanellopoulou, C., Davis, J. C., Matthews, H. F., Douek, D. C., Cohen, J. I., Uzel, G., Su, H. C. and Lenardo, M. J. (2011) Second messenger role for Mg2+ revealed by human T-cell immunodeficiency. Nature 475, 471-476.
  13. Rude, R. K. and Gruber, H. E. (2004) Magnesium deficiency and osteoporosis: animal and human observations. J. Nutr. Biochem. 15, 710-716.
  14. Ferré, S., Hoenderop, J. G. and Bindels, R. J. (2011) Insight into renal Mg2+ transporters. Curr. Opin. Nephrol. Hypertens. 20, 169-176.
  15. McKusick, V. A. (1998) Mendelian Inheritance in Man. A Catalog of Human Genes and Genetic Disorders, 12th edn, Johns Hopkins University Press, Baltimore.
  16. Stuiver, M., Lainez, S., Will, C., Terryn, S., Günzel, D., Debaix, H., Sommer, K., Kopplin, K., Thumfart, J., Kampik, N. B. et al. (2011) CNNM2, encoding a basolateral protein required for renal Mg2+ handling, is mutated in dominant hypomagnesemia. Am. J. Hum. Genet. 88, 333-343.
  17. De Baaij, J. H., Stuiver, M., Meij, I. C., Lainez, S., Kopplin, K., Venselaar, H., Müller, D., Bindels, R. J. and Hoenderop, J. G. (2012) Membrane topology and intracellular processing of cyclin M2 (CNNM2). J. Biol. Chem. 287, 13644-13655.
  18. Polok, B., Escher, P., Ambresin, A., Chouery, E, Bolay, S., Meunier, I., Nan, F., Hamel, C., Munier, F. L., Thilo, B. et al. (2009) Mutations in CNNM4 cause recessive cone-rod dystrophy with amelogenesis imperfecta. Am. J. Hum. Genet. 84, 259-265.
  19. Parry, D. A., Mighell, A. J., El-Sayed, W., Shore, R. C., Jalili, I. K., Dollfus, H., Bloch-Zupan, A., Carlos, R., Carr, I. M., Downey, L. M. et al. (2009) Mutations in CNNM4 cause Jalili syndrome, consisting of autosomal-recessive cone-rod dystrophy and amelogenesis imperfecta. Am. J. Hum. Genet. 84, 266-273.
  20. Yamazaki, D., Funato, Y., Miura, J., Sato, S., Toyosawa, S., Furutani, K., Kurachi, Y., Omori, Y., Furukawa, T., Tsuda, T. et al. (2013) Basolateral Mg2+ extrusion via CNNM4 mediates transcellular Mg2+ transport across epithelia: a mouse model. PLoS Genet. 9, e1003983.
  21. Goytain, A. and Quamme, G. A. (2005) Functional characterization of ACDP2 (ancient conserved domain protein), a divalent metal transporter. Physiol. Genomics 22, 382-389.
  22. Wang, C. Y., Shi, J. D., Yang, P., Kumar, P. G., Li, Q. Z., Run, Q. G., Su, Y. C., Scott, H. S., Kao, K. J. and She, J. X. (2003) Molecular cloning and characterization of a novel gene family of four ancient conserved domain proteins (ACDP). Gene 306, 37-44.
  23. Wang, C. Y., Yang, P., Shi, J. D., Purohit, S., Guo, D., An, H., Gu, J. G., Ling, J., Dong, Z. and She, J. X. (2004) Molecular cloning and characterization of the mouse Acdp gene family. BMC Genomics 5, 1-9.
  24. Gibson, M. M., Bagga, D. A., Miller, C. G. and Maguire, M. E. (1991) Magnesium transport in Salmonella typhimurium: the influence of new mutations conferring Co2+ resistance on the CorA Mg2+ transport system. Mol. Microbiol. 5, 2753-2762.
  25. Yang, M., Jensen, L. T., Gardner, A. J. and Culotta, V. C. (2005) Manganese toxicity and Saccharomyces cerevisiae Mam3p, a member of the ACDP (ancient conserved domain protein) family. Biochem. J. 386, 479-487.
  26. Bateman, A. (1997) The structure of a domain common to archaebacteria and the homocystinuria disease protein. Trends Biochem. Sci. 22, 12-13.
  27. Scott, J. W., Hawley, S. A., Green, K. A., Anis, M., Stewart, G., Scullion, G. A., Norman, D. G. and Hardie, D. G. (2004) CBS domains form energy-sensing modules whose binding of adenosine ligands is disrupted by disease mutations. J. Clin. Invest. 113, 274-284.
  28. Kemp, B. E. (2004) Bateman modules and adenosine derivatives form a binding contract. J. Clin. Invest. 113, 182-184.
  29. Shabb, J. B. and Corbin, J. D. (1992) Cyclic nucleotide-binding domains in proteins having diverse functions. J. Biol. Chem. 267, 5723-5726.
  30. Hattori, M., Tanaka, Y., Fukai, S., Ishitani, R. and Nureki, O. (2007) Crystal structure of the MgtE Mg2+ transporter. Nature 448, 1072-1075.
  31. Hattori, M., Iwase, N., Furuya, N., Tanaka, Y., Tsukazaki, T., Ishitani, R., Maguire, ME., Ito, K., Maturana, A. and Nureki, O. (2009) Mg2+-dependent gating of bacterial MgtE channel underlies Mg2+ homeostasis. EMBO J. 28, 3602-3612.
  32. Ishitani, R., Sugita, Y., Dohmae, N., Furuya, N., Hattori, M. and Nureki, O. (2008) Mg2+-sensing mechanism of Mg2+ transporter MgtE probed by molecular dynamics study. Proc. Natl. Acad. Sci. U.S.A. 105, 15393-15398.
  33. Guo, D., Ling, J., Wang, M. H., She, J. X., Gu, J. and Wang, C. Y. (2005) Physical interaction and functional coupling between ACDP4 and the intracellular ion chaperone COX11, an implication of the role of ACDP4 in essential metal ion transport and homeostasis. Mol. Pain 1, 1-11.
  34. Gómez-García, I., Oyenarte, I. and Martínez-Cruz, L. A. (2011) Purification, crystallization and preliminary crystallographic analysis of the CBS pair of the human metal transporter CNNM4. Acta Crystallogr. F Struct. Biol. Commun. 67, 349-353.
  35. Gómez-García, I., Stuiver, M., Ereñoo, J., Oyenarte, I., Corral-Rodríguez, M. A., Müller, D. and Martínez-Cruz, L. A. (2012) Purification, crystallization and preliminary crystallographic analysis of the CBS-domain pair of cyclin M2 (CNNM2). Acta Crystallogr. F Struct. Biol. Commun. 68, 1198-1203.
  36. Marley, J., Lu, M. and Bracken, C. (2001) A method for efficient isotopic labeling of recombinant proteins. J. Biomol. NMR 20, 71-75.
  37. Otwinowski, Z. and Minor, W. (1997) Processing of X-ray diffraction data collected in oscillation mode. Methods Enzymol. 276, 307-326.
  38. McCoy, A. J., Grosse-Kunstleve, R. W., Adams, P. D., Winn, M. D., Storoni, L. C. and Read, R. J. (2007) Phaser crystallographic software. J. Appl. Crystallogr. 40, 658-674.
  39. Lucas, M., Encinar, J. A., Arribas, E. A., Oyenarte, I., García, I. G., Kortazar, D., Fernández, J. A., Mato, J. M., Martínez-Chantar, M. L. and Martínez-Cruz, L. A. (2010) Binding of S-methyl-51-thioadenosine and S-adenosyl-L-methionine to protein MJ0100 triggers an open-to-closed conformational change in its CBS motif pair. J. Mol. Biol. 396, 800-820.
  40. Zwart, P. H., Afonine, P. V., Grosse-Kunstleve, R. W., Hung, L. W., Ioerger, T. R., McCoy, A. J., McKee, E., Moriarty, N. W., Read, R. J., Sacchettini, J. C. et al. (2008) Automated structure solution with the PHENIX suite. Methods Mol. Biol. 426, 419-435.
  41. Vagin, A. A., Steiner, R. S., Lebedev, A. A., Potterton, L., McNicholas, S., Long, F. and Murshudov, G. N. (2004) REFMAC5 dictionary: organisation of prior chemical knowledge and guidelines for its use. Acta Crystallogr. D Biol. Crystallogr. 60, 2284-2295.
  42. Emsley, P. and Cowtan, K. (2004) Coot: model-building tools for molecular graphics. Acta Crystallogr. D Biol. Crystallogr. 60, 2126-2132.
  43. Chen, V. B., Arendall, 3rd, W. B., Headd, J. J., Keedy, D. A., Immormino, R. M., Kapral, G. J., Murray, L. W., Richardson, J. S. and Richardson, D. C. (2010) MolProbity: all-atom structure validation for macromolecular crystallography. Acta Crystallogr. D Biol. Crystallogr. 66, 12-21.
  44. Reference deleted.
  45. Ignoul, S. and Eggermont, J. (2005) CBS domains: structure, function, and pathology in human proteins. Am. J. Physiol. Cell Physiol. 289, C1369-C1378.
  46. Baykov, A. A., Tuominen, H. K. and Lahti, R. (2011) The CBS domain: a protein module with an emerging prominent role in regulation. ACS Chem. Biol. 6, 1156-1163.
  47. Ereño-Orbea, J., Oyenarte, I. and Martíinez-Cruz, L. A. (2013) CBS domains: ligand binding sites and conformational variability. Arch. Biochem. Biophys. 540, 70-81.
  48. Gómez-García, I., Oyenarte, I. and Martínez-Cruz, L. A. (2010) The crystal structure of protein MJ1225 from Methanocaldococcus jannaschii shows strong conservation of key structural features seen in the eukaryal gamma-AMPK. J. Mol. Biol. 399, 53-70.
  49. Beis, I. and Newsholme, E. A. (1975) The contents of adenine nucleotides, phosphagens and some glycolytic intermediates in resting muscles from vertebrates and invertebrates. Biochem. J. 152, 23-32.
  50. Sigel, H. (1987) Isomeric equilibria in complexes of adenosine 5'-triphosphate with divalent metal ions. Solution structures of M(ATP)2- complexes. Eur. J. Biochem. 165, 65-72.
  51. Hung, L. W., Wang, I. X., Nikaido, K., Liu, P. Q., Ames, G. F. and Kim, S. H. (1998) Crystal structure of the ATP-binding subunit of ABC transporter. Nature 396, 703-707.
  52. Wu, S. L., Li, C. C., Chen, J. C., Chen, Y. J., Lin, C. T., Ho, T. Y. and Hsiang, C. Y. (2009) Mutagenesis identifies the critical amino acid residues of human endonuclease G involved in catalysis, magnesium coordination, and substrate specificity. J. Biomed. Sci. 16, 6.
  53. San-Cristobal, P., Dimke, H., Hoenderop, J. G. and Bindels, R. J. (2010) Novel molecular pathways in renal Mg2+ transport: a guided tour along the nephron. Curr. Opin. Nephrol. Hypertens. 19, 456-462.
  54. Voets, T., Nilius, B., Hoefs, S., van der Kemp, A. W, Droogmans, G, Bindels, R. J. and Hoenderop, J. G. (2004) TRPM6 forms the Mg2+ influx channel involved in intestinal and renal Mg2+ absorption. J. Biol. Chem. 279, 19-25.
  55. Li, M., Jiang, J. and Yue, L. (2006) Functional characterization of homo- and heteromeric channel kinases TRPM6 and TRPM7. J. Gen. Physiol. 127, 525-537.
  56. Li, M., Du, J., Jiang, J., Ratzan, W., Su, L. T., Runnels, L. W. and Yue, L. (2007) Molecular determinants of Mg2+ and Ca2+ permeability and pH sensitivity in TRPM6 and TRPM7. J. Biol. Chem. 282, 25817-25830.
  57. Hirata, Y., Funato, Y., Takano, Y. and Miki, H. (2014) Mg2+-dependent interactions of ATP with the cystathionine-ß-synthase (CBS) comains of a magnesium transporter. J. Biol. Chem. 289, 14731-14739.
  58. Hardy, S., Uetani, N., Wong, N., Kostantin, E., Labbé, D. P., Bégin, L. R., Mes-Masson, A., Miranda-Saavedra, D. and Tremblay, M. L. (2015) The protein tyrosine phosphatase PRL-2 interacts with the magnesium transporter CNNM3 to promote oncogenesis. Oncogene. 34(8), 986-995.