CSS Drop Down Menu by

Publications → Papers → References

In silico approach for the discovery of new PPAR-gamma modulators among plant-derived polyphenols. Encinar, J.A., Fernández-Ballester, G., Galiano-Ibarra, V., and Micol, V. Drug Design, Development and Therapy. 2015; 9: 5877-5895.

  1. Wang L, Waltenberger B, Pferschy-Wenzig EM, et al. Natural product agonists of peroxisome proliferator-activated receptor gamma (PPARgamma): a review. Biochemical pharmacology. 2014; 92(1):73-89.
  2. Yu S, Reddy JK. Transcription coactivators for peroxisome proliferator-activated receptors. Biochimica et biophysica acta. 2007; 1771(8):936-951.
  3. Issemann I, Green S. Activation of a member of the steroid hormone receptor superfamily by peroxisome proliferators. Nature. 1990; 347(6294):645-650.
  4. Dreyer C, Krey G, Keller H, Givel F, Helftenbein G, Wahli W. Control of the peroxisomal beta-oxidation pathway by a novel family of nuclear hormone receptors. Cell. 1992; 68(5):879-887.
  5. Evans RM, Barish GD, Wang YX. PPARs and the complex journey to obesity. Nature medicine. 2004; 10(4):355-361.
  6. Reddy JK, Hashimoto T. Peroxisomal beta-oxidation and peroxisome proliferator-activated receptor alpha: an adaptive metabolic system. Annual review of nutrition. 2001; 21:193-230.
  7. Giordano Attianese GM, Desvergne B. Integrative and systemic approaches for evaluating PPARbeta/delta (PPARD) function. Nuclear receptor signaling. 2015; 13:e001.
  8. Semple RK, Chatterjee VK, O'Rahilly S. PPAR gamma and human metabolic disease. The Journal of clinical investigation. 2006; 116(3):581-589.
  9. Higgins LS, Mantzoros CS. The Development of INT131 as a Selective PPARgamma Modulator: Approach to a Safer Insulin Sensitizer. PPAR research. 2008; 2008:936906.
  10. Auboeuf D, Rieusset J, Fajas L, et al. Tissue distribution and quantification of the expression of mRNAs of peroxisome proliferator-activated receptors and liver X receptor-alpha in humans: no alteration in adipose tissue of obese and NIDDM patients. Diabetes. 1997; 46(8):1319-1327.
  11. Medina-Gomez G, Gray SL, Yetukuri L, et al. PPAR gamma 2 prevents lipotoxicity by controlling adipose tissue expandability and peripheral lipid metabolism. PLoS genetics. 2007; 3(4):e64.
  12. Choi SS, Park J, Choi JH. Revisiting PPARgamma as a target for the treatment of metabolic disorders. BMB reports. Nov 2014;47(11):599-608.
  13. Elte JW, Blickle JF. Thiazolidinediones for the treatment of type 2 diabetes. European Journal of Internal Medicine. 2007; 18(1):18-25.
  14. Ahmadian M, Suh JM, Hah N, et al. PPARgamma signaling and metabolism: the good, the bad and the future. Nature Medicine. 2013; 19(5):557-566.
  15. Petersen RK, Christensen KB, Assimopoulou AN, et al. Pharmacophore-driven identification of PPARgamma agonists from natural sources. Journal of Computer-Aided Molecular Design. 2011; 25(2):107-116.
  16. Harvey AL, Edrada-Ebel R, Quinn RJ. The re-emergence of natural products for drug discovery in the genomics era. Nature Reviews. Drug Discovery. 2015; 14(2):111-129.
  17. Barrajón-Catalán E, Herranz-Lopez M, Joven J, et al. Molecular promiscuity of plant polyphenols in the management of age-related diseases: far beyond their antioxidant properties. Advances in Experimental Medicine and Biology. 2014; 824:141-159.
  18. Cragg GM, Newman DJ. Natural products: a continuing source of novel drug leads. Biochimica et Biophysica Acta. 2013; 1830(6):3670-3695.
  19. Herranz-Lopez M, Barrajon-Catalan E, Segura-Carretero A, Menendez JA, Joven J, Micol V. Lemon verbena (Lippia citriodora) polyphenols alleviate obesity-related disturbances in hypertrophic adipocytes through AMPK-dependent mechanisms. Phytomedicine: International Journal of Phytotherapy and Phytopharmacology. 2015; 22(6):605-614.
  20. Higgins LS, Depaoli AM. Selective peroxisome proliferator-activated receptor gamma (PPARgamma) modulation as a strategy for safer therapeutic PPARgamma activation. The American Journal of Clinical Nutrition. 2010; 91(1):267S-272S.
  21. Rothwell JA, Perez-Jimenez J, Neveu V, et al. Phenol-Explorer 3.0: a major update of the Phenol-Explorer database to incorporate data on the effects of food processing on polyphenol content. Database: the journal of biological databases and curation. 2013; 2013:bat070.
  22. Lu K, Han M, Ting HL, Liu Z, Zhang D. Scutellarin from Scutellaria baicalensis suppresses adipogenesis by upregulating PPARalpha in 3T3-L1 cells. Journal of Natural Products. 2013; 76(4):672-678.
  23. Bottegoni G, Rocchia W, Rueda M, Abagyan R, Cavalli A. Systematic exploitation of multiple receptor conformations for virtual ligand screening. PloS One. 2011; 6(5):e18845.
  24. Laskowski RA, Swindells MB. LigPlot+: multiple ligand-protein interaction diagrams for drug discovery. Journal of Chemical Information and Modeling. 2011; 51(10):2778-2786.
  25. Salentin S, Schreiber S, Haupt VJ, Adasme MF, Schroeder M. PLIP: fully automated protein-ligand interaction profiler. Nucleic Acids Res. 2015; 43(W1):W443-7.
  26. Wang Y, Xiao J, Suzek TO, Zhang J, Wang J, Bryant SH. PubChem: a public information system for analyzing bioactivities of small molecules. Nucleic Acids Research. 2009; 37(Web Server issue):W623-633.
  27. The PyMOL Molecular Graphics System, Version 1.7.4 Schrödinger, LLC. 2015.
  28. Guerois R, Nielsen JE, Serrano L. Predicting changes in the stability of proteins and protein complexes: a study of more than 1000 mutations. Journal of Molecular Biology. 2002; 320(2):369-387.
  29. Schymkowitz J, Borg J, Stricher F, Nys R, Rousseau F, Serrano L. The FoldX web server: an online force field. Nucleic acids research. 2005; 33(Web Server issue):W382-388.
  30. Trott O, Olson AJ. AutoDock Vina: improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. Journal of Computational Chemistry. 2010; 31(2):455-461.
  31. Seeliger D, de Groot BL. Ligand docking and binding site analysis with PyMOL and Autodock/Vina. Journal of Computer-Aided Molecular Design. 2010; 24(5):417-422.
  32. Cheng F, Li W, Zhou Y, et al. admetSAR: a comprehensive source and free tool for assessment of chemical ADMET properties. Journal of Chemical Information and Modeling. 2012; 52(11):3099-3105.
  33. Furukawa A, Arita T, Fukuzaki T, et al. Substituents at the naphthalene C3 position of (-)-Cercosporamide derivatives significantly affect the maximal efficacy as PPARgamma partial agonists. Bioorganic & Medicinal Chemistry Letters. 2012; 22(3):1348-1351.
  34. Rother K, Preissner R, Goede A, Frommel C. Inhomogeneous molecular density: reference packing densities and distribution of cavities within proteins. Bioinformatics. 2003; 19(16):2112-2121.
  35. Mirza MU, Ghori NU, Ikram N, Adil AR, Manzoor S. Pharmacoinformatics approach for investigation of alternative potential hepatitis C virus nonstructural protein 5B inhibitors. Drug design, development and therapy. 2015; 9:1825-1841.
  36. Borea PA, Varani K, Gessi S, Gilli P, Dalpiaz A. Receptor binding thermodynamics as a tool for linking drug efficacy and affinity. Farmaco. 1998; 53(4):249-254.
  37. Yuriev E. Challenges and advances in structure-based virtual screening. Future Medicinal Chemistry. 2014; 6(1):5-7.
  38. Kitchen DB, Decornez H, Furr JR, Bajorath J. Docking and scoring in virtual screening for drug discovery: methods and applications. Nature Reviews. Drug Discovery. 2004; 3(11):935-949.
  39. Ripphausen P, Stumpfe D, Bajorath J. Analysis of structure-based virtual screening studies and characterization of identified active compounds. Future Medicinal Chemistry. 2012; 4(5):603-613.
  40. Lipinski CA. Lead- and drug-like compounds: the rule-of-five revolution. Drug Discovery Today. Technologies. 2004; 1(4):337-341.
  41. Danishuddin M, Khan AU. Structure based virtual screening to discover putative drug candidates: necessary considerations and successful case studies. Methods. 2015; 71:135-145.
  42. Shirai NC, Kikuchi M. Structural flexibility of intrinsically disordered proteins induces stepwise target recognition. The Journal of Chemical Physics. 2013; 139(22):225103.
  43. Shen J, Cheng F, Xu Y, Li W, Tang Y. Estimation of ADME properties with substructure pattern recognition. Journal of Chemical Information and Modeling. 2010; 50(6):1034-1041.
  44. Pham The H, González-Álvarez I, Bermejo M, et al. In Silico Prediction of Caco-2 Cell Permeability by a Classification QSAR Approach. Molecular Informatics. 2011; 30(4):376-385.
  45. Wang Z, Chen Y, Liang H, Bender A, Glen RC, Yan A. P-glycoprotein substrate models using support vector machines based on a comprehensive data set. Journal of Chemical Information and Modeling. 2011; 51(6):1447-1456.
  46. Chen L, Li Y, Zhao Q, Peng H, Hou T. ADME evaluation in drug discovery. 10. Predictions of P-glycoprotein inhibitors using recursive partitioning and naive Bayesian classification techniques. Molecular Pharmaceutics. 2011; 8(3):889-900.
  47. Broccatelli F, Carosati E, Neri A, et al. A novel approach for predicting P-glycoprotein (ABCB1) inhibition using molecular interaction fields. Journal of Medicinal Chemistry. 2011; 54(6):1740-1751.
  48. Kido Y, Matsson P, Giacomini KM. Profiling of a prescription drug library for potential renal drug-drug interactions mediated by the organic cation transporter 2. Journal of Medicinal Chemistry. 2011; 54(13):4548-4558.
  49. Carbon-Mangels M, Hutter MC. Selecting Relevant Descriptors for Classification by Bayesian Estimates: A Comparison with Decision Trees and Support Vector Machines Approaches for Disparate Data Sets. Molecular Informatics. 2011; 30(10):885-895.
  50. Cheng F, Yu Y, Shen J, et al. Classification of Cytochrome P450 Inhibitors and Noninhibitors Using Combined Classifiers. Journal of Chemical Information and Modeling. 2011; 51(5):996-1011.
  51. Anzenbacher P, Anzenbacherova E. Cytochromes P450 and metabolism of xenobiotics. Cellular and Molecular Life Sciences: CMLS. 2001; 58(5-6):737-747.
  52. Olsen L, Oostenbrink C, Jorgensen FS. Prediction of cytochrome P450 mediated metabolism. Adv Drug Deliv Rev. 2015; 86:61-71.
  53. Lynch T, Price A. The effect of cytochrome P450 metabolism on drug response, interactions, and adverse effects. American Family Physician. 2007; 76(3):391-396.
  54. OSIRIS Property Explorer. Accessed on 29 June 2015.
  55. Pedretti A, Villa L, Vistoli G. VEGA: a versatile program to convert, handle and visualize molecular structure on Windows-based PCs. Journal of Molecular Graphics & Modelling. Aug 2002;21(1):47-49.