CSS Drop Down Menu by

Publications → Papers → References

AMPK modulatory activity of olive phenolic compounds: bioassay-guided isolation on adipocyte model and in silico approach. Jiménez-Sánchez, C., Olivares-Vicente, M., Rodríguez-Pérez, C., Herranz-López, M., Lozano-Sánchez, J., Segura-Carretero, A., Fernández Gutiérrez, A., Encinar, J.A., Micol, V. 2017. PLoS ONE 12(3): e0173074.

  1. Siriwardhana, N., Kalupahana, N. S., Cekanova, M., LeMieux, M., et al., Modulation of adipose tissue inflammation by bioactive food compounds. J Nutr Biochem 2013, 24, 613-623.
  2. Ma, S., Jing, F., Xu, C., Zhou, L., et al., Thyrotropin and obesity: increased adipose triglyceride content through glycerol-3-phosphate acyltransferase 3. Sci Rep 2015, 5, 7633.
  3. Kalupahana, N. S., Moustaid-Moussa, N., Claycombe, K. J., Immunity as a link between obesity and insulin resistance. Mol Aspects Med 2012, 33, 26-34.
  4. Wang, S., Moustaid-Moussa, N., Chen, L., Mo, H., et al., Novel insights of dietary polyphenols and obesity. J Nutr Biochem 2014, 25, 1-18.
  5. Bijland, S., Mancini, S. J., Salt, I. P., Role of AMP-activated protein kinase in adipose tissue metabolism and inflammation. Clin Sci (Lond) 2013, 124, 491-507.
  6. Carling, D., Thornton, C., Woods, A., Sanders, M. J., AMP-activated protein kinase: new regulation, new roles? Biochem J 2012, 445, 11-27.
  7. Novikova, D. S., Garabadzhiu, A. V., Melino, G., Barlev, N. A., Tribulovich, V. G., AMP-activated protein kinase: structure, function, and role in pathological processes. Biochemistry (Mosc) 2015, 80, 127-144.
  8. Xiao, B., Sanders, M. J., Underwood, E., Heath, R., et al., Structure of mammalian AMPK and its regulation by ADP. Nature 2011, 472, 230-233.
  9. Shaw, R. J., Kosmatka, M., Bardeesy, N., Hurley, R. L., et al., The tumor suppressor LKB1 kinase directly activates AMP-activated kinase and regulates apoptosis in response to energy stress. Proc Natl Acad Sci U S A 2004, 101, 3329-3335.
  10. Shackelford, D. B., Shaw, R. J., The LKB1-AMPK pathway: metabolism and growth control in tumour suppression. Nat Rev Cancer 2009, 9, 563-575.
  11. Woods, A., Dickerson, K., Heath, R., Hong, S. P., et al., Ca2+/calmodulin-dependent protein kinase kinase-beta acts upstream of AMP-activated protein kinase in mammalian cells. Cell Metab 2005, 2, 21-33.
  12. Sanders, M. J., Grondin, P. O., Hegarty, B. D., Snowden, M. A., Carling, D., Investigating the mechanism for AMP activation of the AMP-activated protein kinase cascade. Biochem J 2007, 403, 139-148.
  13. Hardie, D. G., Ross, F. A., Hawley, S. A., AMPK: a nutrient and energy sensor that maintains energy homeostasis. Nat Rev Mol Cell Biol 2012, 13, 251-262.
  14. Ko, H. J., Lo, C. Y., Wang, B. J., Chiou, R. Y. Y., Lin, S. M., Theaflavin-3,3'-digallate, a black tea polyphenol, stimulates lipolysis associated with the induction of mitochondrial uncoupling proteins and AMPK-FoxO3A-MnSOD pathway in 3T3-L1 adipocytes. Journal of Functional Foods 2015, 17, 271-282.
  15. Kim, J., Lee, I., Seo, J., Jung, M., et al., Vitexin, orientin and other flavonoids from Spirodela polyrhiza inhibit adipogenesis in 3T3-L1 cells. Phytother Res 2010, 24, 1543-1548.
  16. Herranz-Lopez, M., Barrajon-Catalan, E., Segura-Carretero, A., Menendez, J. A., et al., Lemon verbena (Lippia citriodora) polyphenols alleviate obesity-related disturbances in hypertrophic adipocytes through AMPK-dependent mechanisms. Phytomedicine 2015, 22, 605-614.
  17. Joven, J., Espinel, E., Rull, A., Aragones, G., et al., Plant-derived polyphenols regulate expression of miRNA paralogs miR-103/107 and miR-122 and prevent diet-induced fatty liver disease in hyperlipidemic mice. Biochim Biophys Acta 2012, 1820, 894-899.
  18. Menendez, J. A., Joven, J., Aragones, G., Barrajon-Catalan, E., et al., Xenohormetic and anti-aging activity of secoiridoid polyphenols present in extra virgin olive oil: a new family of gerosuppressant agents. Cell Cycle 2013, 12, 555-578.
  19. Rigacci, S., Miceli, C., Nediani, C., Berti, A., et al., Oleuropein aglycone induces autophagy via the AMPK/mTOR signalling pathway: a mechanistic insight. Oncotarget 2015, 6, 35344-35357.
  20. Talhaoui, N., Gomez-Caravaca, A. M., Leon, L., De la Rosa, R., et al., Determination of phenolic compounds of 'Sikitita' olive leaves by HPLC-DAD-TOF-MS. Comparison with its parents 'Arbequina' and 'Picual' olive leaves. LWT-Food Sci. Technol. 2014, 58, 28-34.
  21. Quirantes-Pine, R., Lozano-Sanchez, J., Herrero, M., Ibanez, E., et al., HPLC-ESI-QTOF-MS as a Powerful Analytical Tool for Characterising Phenolic Compounds in Olive-leaf Extracts. Phytochem. Anal. 2013, 24, 213-223.
  22. Lozano-Sanchez, J., Segura-Carretero, A., Menendez, J. A., Oliveras-Ferraros, C., et al., Prediction of extra virgin olive oil varieties through their phenolic profile. Potential cytotoxic activity against human breast cancer cells. J Agric Food Chem 2010, 58, 9942-9955.
  23. Green, H., Kehinde, O., An established preadipose cell line and its differentiation in culture. II. Factors affecting the adipose conversion. Cell 1975, 5, 19-27.
  24. Herranz-Lopez, M., Fernandez-Arroyo, S., Perez-Sanchez, A., Barrajon-Catalan, E., et al., Synergism of plant-derived polyphenols in adipogenesis: perspectives and implications. Phytomedicine 2012, 19, 253-261.
  25. Encinar, J. A., Fernandez-Ballester, G., Galiano-Ibarra, V., Micol, V., In silico approach for the discovery of new PPARgamma modulators among plant-derived polyphenols. Drug Des Devel Ther 2015, 9, 5877-5895.
  26. Barrajon-Catalan, E., Herranz-Lopez, M., Joven, J., Segura-Carretero, A., et al., Molecular promiscuity of plant polyphenols in the management of age-related diseases: far beyond their antioxidant properties. Adv Exp Med Biol 2014, 824, 141-159.
  27. Moon, J., Do, H. J., Kim, O. Y., Shin, M. J., Antiobesity effects of quercetin-rich onion peel extract on the differentiation of 3T3-L1 preadipocytes and the adipogenesis in high fat-fed rats. Food and chemical toxicology: an international journal published for the British Industrial Biological Research Association 2013, 58, 347-354.
  28. Sung, J., Lee, J., Capsicoside G, a furostanol saponin from pepper (Capsicum annuum L.) seeds, suppresses adipogenesis through activation of AMP-activated protein kinase in 3T3-L1 cells. Journal of Functional Foods 2016, 20, 148-158.
  29. Gonzalez-Barroso, M. M., Anedda, A., Gallardo-Vara, E., Redondo-Horcajo, M., et al., Fatty acids revert the inhibition of respiration caused by the antidiabetic drug metformin to facilitate their mitochondrial beta-oxidation. Biochim Biophys Acta 2012, 1817, 1768-1775.
  30. Kang, S. I., Shin, H. S., Kim, H. M., Hong, Y. S., et al., Immature Citrus sunki peel extract exhibits antiobesity effects by beta-oxidation and lipolysis in high-fat diet-induced obese mice. Biol Pharm Bull 2012, 35, 223-230.
  31. Li, Y., Xu, S., Mihaylova, M. M., Zheng, B., et al., AMPK phosphorylates and inhibits SREBP activity to attenuate hepatic steatosis and atherosclerosis in diet-induced insulin-resistant mice. Cell Metab 2011, 13, 376-388.
  32. Yuan, H. D., Piao, G. C., An active part of Artemisia sacrorum Ledeb. inhibits adipogenesis via the AMPK signaling pathway in 3T3-L1 adipocytes. Int J Mol Med 2011, 27, 531-536.
  33. Cool, B., Zinker, B., Chiou, W., Kifle, L., et al., Identification and characterization of a small molecule AMPK activator that treats key components of type 2 diabetes and the metabolic syndrome. Cell Metab 2006, 3, 403-416.
  34. Goransson, O., McBride, A., Hawley, S. A., Ross, F. A., et al., Mechanism of action of A-769662, a valuable tool for activation of AMP-activated protein kinase. The Journal of biological chemistry 2007, 282, 32549-32560.
  35. Strobel, P., Allard, C., Perez-Acle, T., Calderon, R., et al., Myricetin, quercetin and catechin-gallate inhibit glucose uptake in isolated rat adipocytes. Biochem J 2005, 386, 471-478.
  36. Xiao, N., Mei, F., Sun, Y., Pan, G., et al., Quercetin, luteolin, and epigallocatechin gallate promote glucose disposal in adipocytes with regulation of AMP-activated kinase and/or sirtuin 1 activity. Planta Med 2014, 80, 993-1000.
  37. Barbier, O., Villeneuve, L., Bocher, V., Fontaine, C., et al., The UDP-glucuronosyltransferase 1A9 enzyme is a peroxisome proliferator-activated receptor alpha and gamma target gene. The Journal of biological chemistry 2003, 278, 13975-13983.
  38. Ono, M., Fujimori, K., Antiadipogenic effect of dietary apigenin through activation of AMPK in 3T3-L1 cells. J Agric Food Chem 2011, 59, 13346-13352.
  39. Kwon, B., Querfurth, H. W., Palmitate activates mTOR/p70S6K through AMPK inhibition and hypophosphorylation of raptor in skeletal muscle cells: Reversal by oleate is similar to metformin. Biochimie 2015, 118, 141-150.
  40. Russo, G. L., Russo, M., Ungaro, P., AMP-activated protein kinase: a target for old drugs against diabetes and cancer. Biochem Pharmacol 2013, 86, 339-350.
  41. Hawley, S. A., Ross, F. A., Chevtzoff, C., Green, K. A., et al., Use of cells expressing gamma subunit variants to identify diverse mechanisms of AMPK activation. Cell Metab 2010, 11, 554-565.
  42. Corominas-Faja, B., Santangelo, E., Cuyas, E., Micol, V., et al., Computer-aided discovery of biological activity spectra for anti-aging and anti-cancer olive oil oleuropeins. Aging (Albany NY) 2014, 6, 731-741.
  43. Taha, M. O., Khanfar, M. A., Oleuropein potently inhibits mammalian target of rapamycin: possible involvement of tandem anomeric hyperconjugation-Michael reaction. Med. Chem. Res. 2015, 24, 616-623.
  44. Guinda, A., Castellano, J. M., Santos-Lozano, J. M., Delgado-Hervas, T., et al., Determination of major bioactive compounds from olive leaf. LWT-Food Sci. Technol. 2015, 64, 431-438.
  45. Peralbo-Molina, A., Priego-Capote, F., Luque de Castro, M. D., Tentative identification of phenolic compounds in olive pomace extracts using liquid chromatography-tandem mass spectrometry with a quadrupole-quadrupole-time-of-flight mass detector. J Agric Food Chem 2012, 60, 11542-11550.
  46. Toth, G., Alberti, A., Solyomvary, A., Barabas, C., et al., Phenolic profiling of various olive bark-types and leaves: HPLC-ESI/MS study. Ind. Crop. Prod. 2015, 67, 432-438.
  47. Fu, S., Arraez-Roman, D., Segura-Carretero, A., Menendez, J. A., et al., Qualitative screening of phenolic compounds in olive leaf extracts by hyphenated liquid chromatography and preliminary evaluation of cytotoxic activity against human breast cancer cells. Anal Bioanal Chem 2010, 397, 643-654.
  48. Michel, T., Khlif, I., Kanakis, P., Termentzi, A., et al., UHPLC-DAD-FLD and UHPLC-HRMS/MS based metabolic profiling and characterization of different Olea europaea organs of Koroneiki and Chetoui varieties. Phytochem. Lett. 2015, 11, 424-439.
  49. Talhaoui, N., Gomez-Caravaca, A. M., Roldan, C., Leon, L., et al., Chemometric Analysis for the Evaluation of Phenolic Patterns in Olive Leaves from Six Cultivars at Different Growth Stages. J. Agric. Food Chem. 2015, 63, 1722-1729.
  50. Borja, R., Martin, A., Maestro, R., Alba, J., Fiestas, J. A., Enhancement of the anaerobic-digestion of olive mill waste-water by the removal of phenolic inhibitors. Process Biochem. 1992, 27, 231-237.
  51. She, G. M., Wang, D., Zeng, S. F., Yang, C. R., Zhang, Y. J., New phenylethanoid glycosides and sugar esters from ku-ding-cha, a herbal tea produced from Ligustrum purpurascens. J Food Sci 2008, 73, C476-481.
  52. Saimaru, H., Orihara, Y., Biosynthesis of acteoside in cultured cells of Olea europaea. J Nat Med 2010, 64, 139-145.
  53. Taamalli, A., Arraez-Roman, D., Ibanez, E., Zarrouk, M., et al., Optimization of microwave-assisted extraction for the characterization of olive leaf phenolic compounds by using HPLC-ESI-TOF-MS/IT-MS(2). J Agric Food Chem 2012, 60, 791-798.
  54. Klen, T. J., Wondra, A. G., Vrhovsek, U., Vodopivec, B. M., Phenolic Profiling of Olives and Olive Oil Process-Derived Matrices Using UPLC-DAD-ESI-QTOF-HRMS Analysis. J Agric Food Chem 2015, 63, 3859-3872.
  55. Hosny, M., Ragab, E., Mohammed, A., Shaheen, U., New secoiridoids from Ligustrum ovalifolium and their hypotensive activity. Pharmacognosy Res 2009, 1, 91-97.
  56. Perez-Bonilla, M., Salido, S., van Beek, T. A., de Waard, P., et al., Isolation of antioxidative secoiridoids from olive wood (Olea europaea L.) guided by on-line HPLC-DAD-radical scavenging detection. Food Chem. 2011, 124, 36-41.
  57. Goodger, J. Q., Cao, B., Jayadi, I., Williams, S. J., Woodrow, I. E., Non-volatile components of the essential oil secretory cavities of Eucalyptus leaves: discovery of two glucose monoterpene esters, cuniloside B and froggattiside A. Phytochemistry 2009, 70, 1187-1194.
  58. Meakins, G. D., Swindells, R., The structures of two acids from olive leaves. Journal of the Chemical Society 1959, 1044-1047.
  59. Melguizo-Melguizo, D., Diaz-de-Cerio, E., Quirantes-Pine, R., Svarc-Gajic, J., Segura-Carretero, A., The potential of Artemisia vulgaris leaves as a source of antioxidant phenolic compounds. Journal of Functional Foods 2014, 10, 192-200.
  60. Casado-Díaz, A., Anter, J., Dorado, G., Quesada-Gómez, J.M. Effects of quercetin, a natural phenolic compound, in the differentiation of human mesenchymal stem cells (MSC) into adipocytes and osteoblasts. Journal of Nutritional Biochemistry 2016, 32: 151-162.
  61. Kim, J., Yang, G., Kim, Y., Kim, J., Ha, J. AMPK activators: mechanisms of action and physiological activities. Exp Mol Med. 2016, 48:e224. Review.
  62. Kim J, Yang G, Ha J. Targeting of AMP-activated protein kinase: prospects for computer-aided drug design. Expert Opin Drug Discov. 2017 Jan;12(1):47-59. Review.
  63. Viollet B, Horman S, Leclerc J, Lantier L, Foretz M, Billaud M, Giri S, Andreelli F. AMPK inhibition in health and disease. Crit Rev Biochem Mol Biol. 2010; 45(4):276-95. Review.
  64. Carling D. AMPK signalling in health and disease. Curr Opin Cell Biol. 2017; 45:31-37. Review.