shaker.umh.es menu
CSS Drop Down Menu by PureCSSMenu.com


Publications → Papers → References

An updated review on marine anticancer compounds: the use of virtual screening for the discovery of small-molecule cancer drugs. Ruiz-Torres, V., Encinar, J.A., Herranz López, M., Perez-Sánchez, A., Galiano, V., Barrajón-Catalán, E., Micol, V. 2017. Molecules 22(7), 1037.


  1. Society, A.C., Cancer Facts and Figures 2016. 2016.
  2. Explained, E.S., Cancer statistics. October 2016.
  3. Mudit, M. and K.A. El Sayed, Cancer control potential of marine natural product scaffolds through inhibition of tumor cell migration and invasion. Drug discovery today, 2016. 21(11): p. 1745-1760.
  4. Siegel, R.L., K.D. Miller, and A. Jemal, Cancer statistics, 2017. CA Cancer J Clin, 2017. 66(1): p. 7-30.
  5. Downing, N.S., Krumholz, H.M., Ross, J.S., Shah, N.D. Regulatory watch: Characterizing the US FDA's approach to promoting transformative innovation. Nat Rev Drug Discov, 2015. 14(11): p. 739-739.
  6. Nicolini, A., et al., Immunotherapy and Hormone-therapy in Metastatic Breast Cancer: A Review and an Update. Curr Drug Targets, 2016. 17(10): p. 1127-39.
  7. Khoo, B.L., et al., Single-cell profiling approaches to probing tumor heterogeneity. Int J Cancer, 2016. 139(2): p. 243-55.
  8. Feinberg, A.P., R. Ohlsson, and S. Henikoff, The epigenetic progenitor origin of human cancer. Nat Rev Genet, 2006. 7(1): p. 21-33.
  9. Paterson, I. and E.A. Anderson, The Renaissance of Natural Products as Drug Candidates. Science, 2005. 310(5747): p. 451.
  10. Howitz, K.T. and D.A. Sinclair, Xenohormesis: sensing the chemical cues of other species. Cell, 2008. 133(3): p. 387-91.
  11. Newman, D.J. and G.M. Cragg, Natural Products as Sources of New Drugs over the Last 25 Years. Journal of Natural Products, 2007. 70(3): p. 461-477.
  12. Fischbach, M.A. and C.T. Walsh, Antibiotics for emerging pathogens. Science, 2009. 325(5944): p. 1089-93.
  13. Cragg, G.M., P.G. Grothaus, and D.J. Newman, Impact of natural products on developing new anti-cancer agents. Chem Rev, 2009. 109(7): p. 3012-43.
  14. Pietra, F., Secondary metabolites from marine microorganisms: bacteria, protozoa, algae and fungi. Achievements and prospects. Natural Product Reports, 1997. 14(5): p. 453-464.
  15. Demain, A.L., Microbial production of primary metabolites. Naturwissenschaften, 1980. 67(12): p. 582-587.
  16. Harborne, J.B., Role of secondary metabolites in chemical defence mechanisms in plants. Ciba Found Symp, 1990. 154: p. 126-34.
  17. Bell, S.C., et al., Screening bacterial metabolites for inhibitory effects against Batrachochytrium dendrobatidis using a spectrophotometric assay. Diseases of Aquatic Organisms, 2013. 103(1): p. 77-85.
  18. Elufioye, T.O. and S. Badal, Chapter 1 - Background to Pharmacognosy, in Pharmacognosy. 2016, Academic Press: Boston. p. 3-13.
  19. Molinski, T.F., et al., Drug development from marine natural products. Nat Rev Drug Discov, 2009. 8(1): p. 69-85.
  20. Dang, V.T., et al., Marine Snails and Slugs: a Great Place To Look for Antiviral Drugs. Journal of Virology, 2015. 89(16): p. 8114-8118.
  21. Desbois, A.P., A. Mearns-Spragg, and V.J. Smith, A fatty acid from the diatom Phaeodactylum tricornutum is antibacterial against diverse bacteria including multi-resistant Staphylococcus aureus (MRSA). Mar Biotechnol, 2009. 11(1): p. 45-52.
  22. Plaza, A., et al., Celebesides A-C and theopapuamides B-D, depsipeptides from an Indonesian sponge that inhibit HIV-1 entry. J Org Chem, 2009. 74(2): p. 504-12.
  23. Wei, X., K. Nieves, and A.D. Rodríguez, Neopetrosiamine A, biologically active bis-piperidine alkaloid from the Caribbean Sea sponge Neopetrosia proxima. Bioorganic & Medicinal Chemistry Letters, 2010. 20(19): p. 5905-5908.
  24. Nuijen, B., et al., Pharmaceutical development of anticancer agents derived from marine sources. Anticancer Drugs, 2000. 11(10): p. 793-811.
  25. Asolkar, R.N., et al., Arenamides A-C, cytotoxic NFkappaB inhibitors from the marine actinomycete Salinispora arenicola. J Nat Prod, 2009. 72(3): p. 396-402.
  26. Lee, S.-M., et al., Stalked sea squirt (Styela clava) tunic waste as a valuable bioresource: Cosmetic and antioxidant activities. Process Biochemistry, 2015. 50(11): p. 1977-1984.
  27. Abdelmohsen, U.R., et al., Potential of marine natural products against drug-resistant fungal, viral, and parasitic infections. Lancet Infect Dis, 2017. 17(2): p. e30-e41.
  28. Kong, D.-X., Y.-Y. Jiang, and H.-Y. Zhang, Marine natural products as sources of novel scaffolds: achievement and concern. Drug discovery today, 2010. 15(21–22): p. 884-886.
  29. Pomponi, S.A., The bioprocess–technological potential of the sea. Journal of Biotechnology, 1999. 70(1–3): p. 5-13.
  30. Williams, P.G., Panning for chemical gold: marine bacteria as a source of new therapeutics. Trends in Biotechnology, 2009. 27(1): p. 45-52.
  31. Jimeno, J., et al., New Marine Derived Anticancer Therapeutics - A Journey from the Sea to Clinical Trials. Marine Drugs, 2004. 2(1).
  32. Senthilkumar, K. and S.-K. Kim, Marine Invertebrate Natural Products for Anti-Inflammatory and Chronic Diseases. Evidence-based Complementary and Alternative Medicine: eCAM, 2013. 2013: p. 572859.
  33. Nikapitiya, C., Chapter 24 - Bioactive Secondary Metabolites from Marine Microbes for Drug Discovery, in Advances in Food and Nutrition Research, K. Se-Kwon, Editor. 2012, Academic Press. p. 363-387.
  34. Blunt, J.W., et al., Marine natural products. Natural Product Reports, 2015. 32(2): p. 116-211.
  35. Kim, S.-K. and R. Pallela, Chapter 1 - Medicinal Foods from Marine Animals: Current Status and Prospects, in Advances in Food and Nutrition Research, K. Se-Kwon, Editor. 2012, Academic Press. p. 1-9.
  36. Ramsey, U.P., et al., Kainic acid and 1'-hydroxykainic acid from Palmariales. Nat Toxins, 1994. 2(5): p. 286-92.
  37. Landowne, R.A. and W. Bergmann, Contributions to the Study of Marine Products. L. Phospholipids of Sponges1,2. The Journal of Organic Chemistry, 1961. 26(4): p. 1257-1261.
  38. Mayer, A.M.S., et al., The odyssey of marine pharmaceuticals: a current pipeline perspective. Trends in Pharmacological Sciences, 2010. 31(6): p. 255-265.
  39. Olivera, B.M., et al., Neuronal calcium channel antagonists. Discrimination between calcium channel subtypes using omega-conotoxin from Conus magus venom. Biochemistry, 1987. 26(8): p. 2086-90.
  40. D'Incalci, M., et al., Trabectedin, a drug acting on both cancer cells and the tumour microenvironment. British Journal of Cancer, 2014. 111(4): p. 646-650.
  41. Jordan, M.A., et al., The primary antimitotic mechanism of action of the synthetic halichondrin E7389 is suppression of microtubule growth. Mol Cancer Ther, 2005. 4(7): p. 1086-95.
  42. Newland, A.M., et al., Brentuximab vedotin: a CD30-directed antibody-cytotoxic drug conjugate. Pharmacotherapy, 2013. 33(1): p. 93-104.
  43. De Zoysa, M., Medicinal benefits of marine invertebrates: sources for discovering natural drug candidates. Adv Food Nutr Res, 2012. 65: p. 153-69.
  44. Thorpe, J.P., A.M. Solé-Cava, and P.C. Watts, Exploited marine invertebrates: genetics and fisheries. Hydrobiologia, 2000. 420(1): p. 165-184.
  45. Gerwick, William H. and Bradley S. Moore, Lessons from the Past and Charting the Future of Marine Natural Products Drug Discovery and Chemical Biology. Chemistry & Biology, 2012. 19(1): p. 85-98.
  46. Saikia, S., et al., Marine steroids as potential anticancer drug candidates: In silico investigation in search of inhibitors of Bcl-2 and CDK-4/Cyclin D1. Steroids, 2015. 102: p. 7-16.
  47. Hu, G.-P., et al., Statistical Research on Marine Natural Products Based on Data Obtained between 1985 and 2008. Marine Drugs, 2011. 9(4): p. 514-525.
  48. Leal, M.C., et al., Bioprospecting of marine invertebrates for new natural products - a chemical and zoogeographical perspective. Molecules, 2012. 17(8): p. 9842-54.
  49. Voultsiadou, E. and D. Vafidis, Marine invertebrate diversity in Aristotle's zoology. Contributions to Zoology, 2007. 76(2): p. 103-120.
  50. Haefner, B., Drugs from the deep: marine natural products as drug candidates. Drug Discov Today, 2003. 8(12): p. 536-44.
  51. Mayer, A.M.S., et al., Marine pharmacology in 2009-2011: Marine compounds with antibacterial, antidiabetic, antifungal, anti-inflammatory, antiprotozoal, antituberculosis, and antiviral activities; affecting the immune and nervous systems, and other miscellaneous mechanisms of action. Marine Drugs, 2013. 11(7): p. 2510-2573.
  52. Kukula-Koch, W.A. and J. Widelski, Chapter 9 - Alkaloids A2 - Badal, Simone, in Pharmacognosy, R. Delgoda, Editor. 2017, Academic Press: Boston. p. 163-198.
  53. Zhang, Y., et al., Alkaloids produced by endophytic fungi: a review. Nat Prod Commun, 2012. 7(7): p. 963-8.
  54. Rocha-Santos, T. and A.C. Duarte, Chapter 1 - Introduction to the analysis of bioactive compounds in marine samples, in Comprehensive Analytical Chemistry. 2014. p. 1-13.
  55. Molinski, T.F., Marine pyridoacridine alkaloids: Structure, synthesis, and biological chemistry. Chemical Reviews, 1993. 93(5): p. 1825-1838.
  56. Hertiani, T., et al., From anti-fouling to biofilm inhibition: New cytotoxic secondary metabolites from two Indonesian Agelas sponges. Bioorganic and Medicinal Chemistry, 2010. 18(3): p. 1297-1311.
  57. Vik, A., et al., (+)-Agelasine D: Improved synthesis and evaluation of antibacterial and cytotoxic activities. Journal of Natural Products, 2006. 69(3): p. 381-386.
  58. Bringmann, G., et al., Ancistectorine D, a naphthylisoquinoline alkaloid with antiprotozoal and antileukemic activities, and further 5,8'- and 7,1'-linked metabolites from the Chinese liana Ancistrocladus tectorius. Fitoterapia, 2016. 115: p. 1-8.
  59. Appenzeller, J., et al., Agelasines J, K, and L from the Solomon Islands marine sponge Agelas cf. mauritiana. Journal of Natural Products, 2008. 71(8): p. 1451-1454.
  60. Chu MJ, Tang XL, Qin GF, Sun YT, Li L, de Voogd NJ, Li PL, Li GQ, Three new non-brominated pyrrole alkaloids from the South China Sea sponge Agelas nakamurai. 2017. Chinese Chemical Letters 28: p. 1210-1213.
  61. Hopwood, D.A., Complex enzymes in microbial natural product biosynthesis, part B: polyketides, aminocoumarins and carbohydrates. Preface. Methods Enzymol, 2009. 459(10): p. 04625-4.
  62. Hochmuth, T. and J. Piel, Polyketide synthases of bacterial symbionts in sponges - Evolution-based applications in natural products research. Phytochemistry, 2009. 70(15-16): p. 1841-1849.
  63. Tsukada, M., et al., Chemical constituents of a marine fungus, Arthrinium sacchari. J Nat Prod, 2011. 74(7): p. 1645-9.
  64. Ebel, R., Terpenes from Marine-Derived Fungi. Marine Drugs, 2010. 8(8): p. 2340-2368.
  65. Kim, S.-K. and I. Wijesekara, Development and biological activities of marine-derived bioactive peptides: A review. Journal of Functional Foods, 2010. 2(1): p. 1-9.
  66. Cheung, R.C., T.B. Ng, and J.H. Wong, Marine Peptides: Bioactivities and Applications. Mar Drugs, 2015. 13(7): p. 4006-43.
  67. Agrawal, S., A. Adholeya, and S.K. Deshmukh, The Pharmacological Potential of Non-ribosomal Peptides from Marine Sponge and Tunicates. Front Pharmacol, 2016. 7(333).
  68. Mehbub, M.F., et al., Marine sponge derived natural products between 2001 and 2010: trends and opportunities for discovery of bioactives. Mar Drugs, 2014. 12(8): p. 4539-77.
  69. Kang, H.K., C.H. Seo, and Y. Park, The effects of marine carbohydrates and glycosylated compounds on human health. Int J Mol Sci, 2015. 16(3): p. 6018-56.
  70. Laurienzo, P., Marine Polysaccharides in Pharmaceutical Applications: An Overview. Marine Drugs, 2010. 8(9): p. 2435-2465.
  71. Shi, L., Bioactivities, isolation and purification methods of polysaccharides from natural products: A review. International Journal of Biological Macromolecules, 2016. 92: p. 37-48.
  72. Safari, D., et al., Identification of the smallest structure capable of evoking opsonophagocytic antibodies against Streptococcus pneumoniae type 14. Infect Immun, 2008. 76(10): p. 4615-23.
  73. He, X., et al., Synergistic combination of marine oligosaccharides and azithromycin against Pseudomonas aeruginosa. Microbiological Research, 2014. 169(9–10): p. 759-767.
  74. Kren, V. and L. Martinkova, Glycosides in medicine: "The role of glycosidic residue in biological activity". Curr Med Chem, 2001. 8(11): p. 1303-28.
  75. Gandhi, N.S. and R.L. Mancera, The structure of glycosaminoglycans and their interactions with proteins. Chem Biol Drug Des, 2008. 72(6): p. 455-82.
  76. Coombe, D.R. and W.C. Kett, Heparan sulfate-protein interactions: therapeutic potential through structure-function insights. Cell Mol Life Sci, 2005. 62(4): p. 410-24.
  77. Munoz-Alonso, M.J., et al., The mechanism of action of plitidepsin. Curr Opin Investig Drugs, 2009. 10(6): p. 536-42.
  78. Krege, S., et al., Prospective randomized double-blind multicentre phase II study comparing gemcitabine and cisplatin plus sorafenib chemotherapy with gemcitabine and cisplatin plus placebo in locally advanced and/or metastasized urothelial cancer: SUSE (AUO-AB 31/05). BJU Int, 2014. 113(3): p. 429-36.
  79. Bendell, J., et al., Phase I/II Study of the Antibody-Drug Conjugate Glembatumumab Vedotin in Patients With Locally Advanced or Metastatic Breast Cancer. Journal of Clinical Oncology, 2014. 32(32): p. 3619-3625.
  80. Molina-Guijarro, J.M., et al., Elisidepsin Interacts Directly with Glycosylceramides in the Plasma Membrane of Tumor Cells to Induce Necrotic Cell Death. PLoS One, 2015. 10(10): p. e0140782.
  81. Mandin, P. and S. Gottesman, A genetic approach for finding small RNAs regulators of genes of interest identifies RybC as regulating the DpiA/DpiB two-component system. Mol Microbiol, 2009. 72(3): p. 551-65.
  82. Look, S.A., et al., The pseudopterosins: anti-inflammatory and analgesic natural products from the sea whip Pseudopterogorgia elisabethae. Proc Natl Acad Sci U S A, 1986. 83(17): p. 6238-40.
  83. Liu, J., R. Huang, and H. Zhu, An improved and efficient synthesis for IPL576,092 and its analogues. Monatshefte für Chemie - Chemical Monthly, 2013. 144(7): p. 1081-1085.
  84. Petek, B.J. and R.L. Jones, PM00104 (Zalypsis(R)): a marine derived alkylating agent. Molecules, 2014. 19(8): p. 12328-35.
  85. Bhatnagar, I. and S.-K. Kim, Marine Antitumor Drugs: Status, Shortfalls and Strategies. Marine Drugs, 2010. 8(10): p. 2702-2720.
  86. Diaz, L., et al., Bryostatin activates HIV-1 latent expression in human astrocytes through a PKC and NF-kB-dependent mechanism. Sci Rep, 2015. 5: p. 12442.
  87. Forero-Torres, A., et al., Polatuzumab Vedotin Combined with Obinutuzumab, Cyclophosphamide, Doxorubicin, and Prednisone (G-CHP) for Patients with Previously Untreated Diffuse Large B-Cell Lymphoma (DLBCL): Preliminary Results of a Phase Ib/II Dose-Escalation Study. Blood, 2016. 128(22): p. 1856.
  88. Kim, Y.H., et al., Clinical efficacy of zanolimumab (HuMax-CD4): two phase 2 studies in refractory cutaneous T-cell lymphoma. Blood, 2007. 109(11): p. 4655-62.
  89. Newman, D.J. and G.M. Cragg, Marine-Sourced Anti-Cancer and Cancer Pain Control Agents in Clinical and Late Preclinical Development (†). Marine Drugs, 2014. 12(1): p. 255-278.
  90. Sleiman, S.F., et al., Hydroxamic acid-based histone deacetylase (HDAC) inhibitors can mediate neuroprotection independent of HDAC inhibition. J Neurosci, 2014. 34(43): p. 14328-37.
  91. Atmaca, H., et al., A diverse induction of apoptosis by trabectedin in MCF-7 (HER2-/ER+) and MDA-MB-453 (HER2+/ER-) breast cancer cells. Toxicology Letters, 2013. 221(2): p. 128-136.
  92. Fontana, A., et al., A new antitumor isoquinoline alkaloid from the marine nudibranch Jorunna funebris. Tetrahedron, 2000. 56(37): p. 7305-7308.
  93. Oku, N., et al., Renieramycin J, a highly cytotoxic tetrahydroisoquinoline alkaloid, from a marine sponge Neopetrosia sp. Journal of Natural Products, 2003. 66(8): p. 1136-1139.
  94. Malve, H., Exploring the ocean for new drug developments: Marine pharmacology. Journal of Pharmacy & Bioallied Sciences, 2016. 8(2): p. 83-91.
  95. Scarpace, S.L., Eribulin Mesylate (E7389): Review of Efficacy and Tolerability in Breast, Pancreatic, Head and Neck, and Non–Small Cell Lung Cancer. Clinical Therapeutics, 2012. 34(7): p. 1467-1473.
  96. Shaw, S.J., The structure activity relationship of discodermolide analogues. Mini Rev Med Chem, 2008. 8(3): p. 276-84.
  97. Zonder, J.A., et al., A phase II trial of bryostatin 1 in the treatment of metastatic colorectal cancer. Clin Cancer Res, 2001. 7(1): p. 38-42.
  98. Caplan, S.L., et al., Pseudopterosin A: Protection of Synaptic Function and Potential as a Neuromodulatory Agent. Mar Drugs, 2016. 14(3).
  99. Mayer, A.M., et al., Pharmacological characterization of the pseudopterosins: novel anti-inflammatory natural products isolated from the Caribbean soft coral, Pseudopterogorgia elisabethae. Life Sci, 1998. 62(26): p. L401-7.
  100. Olivera, B.M., Conus peptides: biodiversity-based discovery and exogenomics. J Biol Chem, 2006. 281(42): p. 31173-7.
  101. Gopal, A.K., et al., Durable remissions in a pivotal phase 2 study of brentuximab vedotin in relapsed or refractory Hodgkin lymphoma. Blood, 2015. 125(8): p. 1236-43.
  102. Riely, G.J., et al., A phase 2 study of TZT-1027, administered weekly to patients with advanced non-small cell lung cancer following treatment with platinum-based chemotherapy. Lung Cancer, 2007. 55(2): p. 181-5.
  103. Depenbrock, H., et al., In vitro activity of aplidine, a new marine-derived anti-cancer compound, on freshly explanted clonogenic human tumour cells and haematopoietic precursor cells. British Journal of Cancer, 1998. 78(6): p. 739-744.
  104. Munoz-Alonso, M.J., et al., Plitidepsin has a dual effect inhibiting cell cycle and inducing apoptosis via Rac1/c-Jun NH2-terminal kinase activation in human melanoma cells. J Pharmacol Exp Ther, 2008. 324(3): p. 1093-101.
  105. Mitsiades, C.S., et al., Aplidin, a marine organism-derived compound with potent antimyeloma activity in vitro and in vivo. Cancer Res, 2008. 68(13): p. 5216-25.
  106. Morande, P.E., et al., The cytotoxic activity of Aplidin in chronic lymphocytic leukemia (CLL) is mediated by a direct effect on leukemic cells and an indirect effect on monocyte-derived cells. Invest New Drugs, 2012. 30(5): p. 1830-40.
  107. Natsume, T., et al., Tumor-specific antivascular effect of TZT-1027 (Soblidotin) elucidated by magnetic resonance imaging and confocal laser scanning microscopy. Cancer Sci, 2007. 98(4): p. 598-604.
  108. Mita, A.C., et al., Phase I and Pharmacokinetic Study of Tasidotin Hydrochloride (ILX651), a Third-Generation Dolastatin-15 Analogue, Administered Weekly for 3 Weeks Every 28 Days in Patients with Advanced Solid Tumors. Clinical Cancer Research, 2006. 12(17): p. 5207.
  109. Hamann, M.T., et al., Kahalalides: Bioactive peptides from a marine mollusk Elysia rufescens and its algal diet Bryopsis sp. Journal of Organic Chemistry, 1996. 61(19): p. 6594-6600.
  110. Hamann, M.T., et al., Kahalalides:? Bioactive Peptides from a Marine Mollusk Elysia rufescens and Its Algal Diet Bryopsis sp.1. The Journal of Organic Chemistry, 1996. 61(19): p. 6594-6600.
  111. Ott, P.A., et al., A phase 2 study of glembatumumab vedotin (GV), an antibody-drug conjugate (ADC) targeting gpNMB, in advanced melanoma. Annals of Oncology, 2016. 27(suppl_6): p. 1147P-1147P.
  112. Advani, R.H., et al., Phase I Study of the Anti-CD22 Antibody-Drug Conjugate Pinatuzumab Vedotin with/without Rituximab in Patients with Relapsed/Refractory B-cell Non-Hodgkin Lymphoma. Clin Cancer Res, 2016. 6(10): p. 1078-0432.
  113. de Goeij, B.E. and J.M. Lambert, New developments for antibody-drug conjugate-based therapeutic approaches. Curr Opin Immunol, 2016. 40: p. 14-23.
  114. Yamashita, A., et al., Synthesis and activity of novel analogs of hemiasterlin as inhibitors of tubulin polymerization: modification of the A segment. Bioorganic & Medicinal Chemistry Letters, 2004. 14(21): p. 5317-5322.
  115. Anderson, H.J., et al., Cytotoxic peptides hemiasterlin, hemiasterlin A and hemiasterlin B induce mitotic arrest and abnormal spindle formation. Cancer Chemother Pharmacol, 1997. 39(3): p. 223-6.
  116. Marchetti, P., et al., A novel hybrid drug between two potent anti-tubulin agents as a potential prolonged anticancer approach. European Journal of Pharmaceutical Sciences, 2016. 91: p. 50-63.
  117. Liu, J., et al., Nanoassemblies from amphiphilic cytarabine prodrug for leukemia targeted therapy. Journal of Colloid and Interface Science, 2017. 487: p. 239-249.
  118. Akashi, Y., et al., Anticancer effects of gemcitabine are enhanced by co-administered iRGD peptide in murine pancreatic cancer models that overexpressed neuropilin-1. Br J Cancer, 2014. 110(6): p. 1481-7.
  119. Kuo, W.-T., et al., Development of gelatin nanoparticles conjugated with phytohemagglutinin erythroagglutinating loaded with gemcitabine for inducing apoptosis in non-small cell lung cancer cells. Journal of Materials Chemistry B, 2016. 4(14): p. 2444-2454.
  120. de Bono, J.S., et al., Phase I pharmacokinetic and pharmacodynamic study of LAQ824, a hydroxamate histone deacetylase inhibitor with a heat shock protein-90 inhibitory profile, in patients with advanced solid tumors. Clin Cancer Res, 2008. 14(20): p. 6663-73.
  121. Nowell, P.C., The clonal evolution of tumor cell populations. Science, 1976. 194(4260): p. 23-8.
  122. Hanahan, D. and R.A. Weinberg, The hallmarks of cancer. Cell, 2000. 100(1): p. 57-70.
  123. Jordan, M.A. and L. Wilson, Microtubules as a target for anticancer drugs. Nat Rev Cancer, 2004. 4(4): p. 253-65.
  124. Hadfield, J.A., et al., Tubulin and microtubules as targets for anticancer drugs. Prog Cell Cycle Res, 2003. 5: p. 309-25.
  125. Avendaño, C. and J.C. Menéndez, Chapter 9 - Anticancer Drugs Targeting Tubulin and Microtubules, in Medicinal Chemistry of Anticancer Drugs (Second Edition). 2015, Elsevier: Boston. p. 359-390.
  126. Wood, K.W., W.D. Cornwell, and J.R. Jackson, Past and future of the mitotic spindle as an oncology target. Current Opinion in Pharmacology, 2001. 1(4): p. 370-377.
  127. Kaur, R., et al., Recent developments in tubulin polymerization inhibitors: An overview. European Journal of Medicinal Chemistry, 2014. 87: p. 89-124.
  128. Mukhtar, E., V.M. Adhami, and H. Mukhtar, Targeting Microtubules by Natural Agents for Cancer Therapy. Molecular cancer therapeutics, 2014. 13(2): p. 275-284.
  129. Jordan, M.A., Mechanism of action of antitumor drugs that interact with microtubules and tubulin. Curr Med Chem Anticancer Agents, 2002. 2(1): p. 1-17.
  130. Luesch, H., et al., Isolation of dolastatin 10 from the marine cyanobacterium Symploca species VP642 and total stereochemistry and biological evaluation of its analogue symplostatin 1. J Nat Prod, 2001. 64(7): p. 907-10.
  131. Bai, R., G.R. Petit, and E. Hamel, Dolastatin 10, a powerful cytostatic peptide derived from a marine animal. Biochemical Pharmacology, 1990. 39(12): p. 1941-1949.
  132. Edler, M.C., et al., Inhibition of tubulin polymerization by vitilevuamide, a bicyclic marine peptide, at a site distinct from colchicine, the vinca alkaloids, and dolastatin 10. Biochemical Pharmacology, 2002. 63(4): p. 707-715.
  133. Lachia, M. and C.J. Moody, The synthetic challenge of diazonamide A, a macrocyclic indole bis-oxazole marine natural product. Nat Prod Rep, 2008. 25(2): p. 227-53.
  134. Cruz-Monserrate, Z., et al., Diazonamide A and a synthetic structural analog: disruptive effects on mitosis and cellular microtubules and analysis of their interactions with tubulin. Mol Pharmacol, 2003. 63(6): p. 1273-80.
  135. Nicolaou, K.C., et al., Total synthesis of the originally proposed and revised structures of palmerolide A. Angew Chem Int Ed Engl, 2007. 46(31): p. 5896-900.
  136. Llorca, O., et al., Analysis of the interaction between the eukaryotic chaperonin CCT and its substrates actin and tubulin. J Struct Biol, 2001. 135(2): p. 205-18.
  137. Uckun, F.M., et al., Spongistatins as tubulin targeting agents. Curr Pharm Des, 2001. 7(13): p. 1291-6.
  138. Zask, A., et al., Hybrids of the hemiasterlin analogue taltobulin and the dolastatins are potent antimicrotubule agents. J Am Chem Soc, 2005. 127(50): p. 17667-71.
  139. Chan, A., et al., Peloruside A inhibits microtubule dynamics in a breast cancer cell line MCF7. Invest New Drugs, 2011. 29(4): p. 615-26.
  140. Chen, Q.H. and D.G. Kingston, Zampanolide and dactylolide: cytotoxic tubulin-assembly agents and promising anticancer leads. Nat Prod Rep, 2014. 31(9): p. 1202-26.
  141. Field, J.J., et al., Microtubule-stabilizing activity of zampanolide, a potent macrolide isolated from the Tongan marine sponge Cacospongia mycofijiensis. J Med Chem, 2009. 52(22): p. 7328-32.
  142. Field, J.J., et al., Zampanolide, a potent new microtubule stabilizing agent, covalently reacts with the taxane luminal site in both tubulin a,ß-heterodimers and microtubules. Chemistry & Biology, 2012. 19(6): p. 686-698.
  143. Isbrucker, R.A., et al., Tubulin polymerizing activity of dictyostatin-1, a polyketide of marine sponge origin. Biochemical Pharmacology, 2003. 66(1): p. 75-82.
  144. Paterson, I., et al., Stereochemical determination of dictyostatin, a novel microtubule-stabilising macrolide from the marine sponge Corallistidae sp. Chem Commun (Camb), 2004(6): p. 632-3.
  145. Madiraju, C., et al., Tubulin assembly, taxoid site binding, and cellular effects of the microtubule-stabilizing agent dictyostatin. Biochemistry, 2005. 44(45): p. 15053-63.
  146. Vollmer, L.L., et al., A simplified synthesis of novel dictyostatin analogues with in vitro activity against epothilone B-resistant cells and antiangiogenic activity in zebrafish embryos. Mol Cancer Ther, 2011. 10(6): p. 994-1006.
  147. Brunden, K.R., et al., MT-Stabilizer, Dictyostatin, Exhibits Prolonged Brain Retention and Activity: Potential Therapeutic Implications. ACS Med Chem Lett, 2013. 4(9): p. 886-9.
  148. Churchill, C.D., M. Klobukowski, and J.A. Tuszynski, The Unique Binding Mode of Laulimalide to Two Tubulin Protofilaments. Chem Biol Drug Des, 2015. 86(2): p. 190-9.
  149. Sun, Y. and Z.L. Peng, Programmed cell death and cancer. Postgrad Med J, 2009. 85(1001): p. 134-40.
  150. Su, Z., et al., Apoptosis, autophagy, necroptosis, and cancer metastasis. Mol Cancer, 2015. 14: p. 48.
  151. Debnath, J., E.H. Baehrecke, and G. Kroemer, Does autophagy contribute to cell death? Autophagy, 2005. 1(2): p. 66-74.
  152. Fulda, S. and S. Pervaiz, Apoptosis signaling in cancer stem cells. Int J Biochem Cell Biol, 2010. 42(1): p. 31-8.
  153. Kroemer, G., Mitochondrial control of apoptosis: an introduction. Biochemical and Biophysical Research Communications, 2003. 304(3): p. 433-435.
  154. Oliver, L. and F.M. Vallette, The role of caspases in cell death and differentiation. Drug Resistance Updates, 2005. 8(3): p. 163-170.
  155. Elmore, S., Apoptosis: A Review of Programmed Cell Death. Toxicologic pathology, 2007. 35(4): p. 495-516.
  156. Cory, S. and J.M. Adams, The Bcl2 family: regulators of the cellular life-or-death switch. Nat Rev Cancer, 2002. 2(9): p. 647-56.
  157. Mathew, R., V. Karantza-Wadsworth, and E. White, Role of autophagy in cancer. Nature reviews. Cancer, 2007. 7(12): p. 961-967.
  158. Mukhtar, E., et al., Apoptosis and autophagy induction as mechanism of cancer prevention by naturally occurring dietary agents. Curr Drug Targets, 2012. 13(14): p. 1831-1841.
  159. Heras-Sandoval, D., et al., The role of PI3K/AKT/mTOR pathway in the modulation of autophagy and the clearance of protein aggregates in neurodegeneration. Cell Signal, 2014. 26(12): p. 2694-701.
  160. Odaka, C., M.L. Sanders, and P. Crews, Jasplakinolide induces apoptosis in various transformed cell lines by a caspase-3-like protease-dependent pathway. Clinical and Diagnostic Laboratory Immunology, 2000. 7(6): p. 947-952.
  161. Ebada, S.S., et al., Two new jaspamide derivatives from the marine sponge Jaspis splendens. Marine Drugs, 2009. 7(3): p. 435-444.
  162. Robinson, S.J., et al., New Structures and Bioactivity Properties of Jasplakinolide (Jaspamide) Analogues from Marine Sponges. J Med Chem, 2010. 53(4): p. 1651-1661.
  163. Aherne, G.W., et al., Antitumour evaluation of dolastatins 10 and 15 and their measurement in plasma by radioimmunoassay. Cancer Chemother Pharmacol, 1996. 38(3): p. 225-32.
  164. Maki, A., et al., The bcl-2 and p53 oncoproteins can be modulated by bryostatin 1 and dolastatins in human diffuse large cell lymphoma. Anticancer Drugs, 1995. 6(3): p. 392-7.
  165. Cheng, L., et al., A Novel Polypeptide Extracted From Ciona savignyi Induces Apoptosis Through a Mitochondrial-Mediated Pathway in Human Colorectal Carcinoma Cells. Clinical Colorectal Cancer, 2012. 11(3): p. 207-214.
  166. Wang, C., et al., A novel polypeptide from Meretrix meretrix Linnaeus inhibits the growth of human lung adenocarcinoma. Experimental Biology and Medicine, 2012. 237(4): p. 442-450.
  167. Potts, M.B., et al., Mode of action and pharmacogenomic biomarkers for exceptional responders to didemnin B. Nature chemical biology, 2015. 11(6): p. 401-408.
  168. Guzii, A.G., et al., Monanchocidin: a new apoptosis-inducing polycyclic guanidine alkaloid from the marine sponge Monanchora pulchra. Org Lett, 2010. 12(19): p. 4292-5.
  169. Dyshlovoy, S.A., et al., Marine alkaloid Monanchocidin a overcomes drug resistance by induction of autophagy and lysosomal membrane permeabilization. Oncotarget, 2015. 6(19): p. 17328-17341.
  170. Benkendorff, K., C.M. McIver, and C.A. Abbott, Bioactivity of the Murex Homeopathic Remedy and of Extracts from an Australian Muricid Mollusc against Human Cancer Cells. Evidence-based Complementary and Alternative Medicine: eCAM, 2011. 2011: p. 879585.
  171. Vine, K.L., et al., In vitro cytotoxicity evaluation of some substituted isatin derivatives. Bioorganic & Medicinal Chemistry, 2007. 15(2): p. 931-938.
  172. Westley, C.B., et al., Enhanced acute apoptotic response to azoxymethane-induced DNA damage in the rodent colonic epithelium by Tyrian purple precursors: a potential colorectal cancer chemopreventative. Cancer Biol Ther, 2010. 9(5): p. 371-9.
  173. Edwards, V., K. Benkendorff, and F. Young, Marine Compounds Selectively Induce Apoptosis in Female Reproductive Cancer Cells but Not in Primary-Derived Human Reproductive Granulosa Cells. Marine Drugs, 2012. 10(1): p. 64-83.
  174. Casapullo, A., et al., Makaluvamine P, a new cytotoxic pyrroloiminoquinone from Zyzzya cf. fuliginosa. J Nat Prod, 2001. 64(10): p. 1354-6.
  175. Shinkre, B.A., et al., Analogs of the marine alkaloid makaluvamines: Synthesis, topoisomerase II inhibition, and anticancer activity. Bioorganic & Medicinal Chemistry Letters, 2007. 17(10): p. 2890-2893.
  176. Chen, T., et al., Experimental Therapy of Ovarian Cancer with Synthetic Makaluvamine Analog: In Vitro and In Vivo Anticancer Activity and Molecular Mechanisms of Action. PLoS One, 2011. 6(6): p. e20729.
  177. Tomasic, T., et al., Analogues of the marine alkaloids oroidin, clathrodin, and hymenidin induce apoptosis in human HepG2 and THP-1 cancer cells. MedChemComm, 2015. 6(1): p. 105-110.
  178. Zhao, Q., et al., In vitro and in vivo anti-tumour activities of echinoside A and ds-echinoside A from Pearsonothuria graeffei. J Sci Food Agric, 2012. 92(4): p. 965-74.
  179. Wang, R., et al., Stellettin B Induces G1 Arrest, Apoptosis and Autophagy in Human Non-small Cell Lung Cancer A549 Cells via Blocking PI3K/Akt/mTOR Pathway. Sci Rep, 2016. 6: p. 27071.
  180. Girard, M., et al., Frondoside A. A novel triterpene glycoside from the holothurian Cucumariafrondosa. Canadian Journal of Chemistry, 1990. 68(1): p. 11-18.
  181. Dyshlovoy, S.A., et al., The marine triterpene glycoside frondoside A exhibits activity in vitro and in vivo in prostate cancer. Int J Cancer, 2016. 138(10): p. 2450-65.
  182. Do, M.T., et al., Ilimaquinone induces death receptor expression and sensitizes human colon cancer cells to TRAIL-induced apoptosis through activation of ROS-ERK/p38 MAPK–CHOP signaling pathways. Food and Chemical Toxicology, 2014. 71: p. 51-59.
  183. Sonoda, H., et al., Requirement of phospholipase D for ilimaquinone-induced Golgi membrane fragmentation. J Biol Chem, 2007. 282(47): p. 34085-92.
  184. Du, L., Y.D. Zhou, and D.G. Nagle, Inducers of hypoxic response: marine sesquiterpene quinones activate HIF-1. J Nat Prod, 2013. 76(6): p. 1175-81.
  185. Chiu, S.C., et al., Tanshinone IIA inhibits human prostate cancer cells growth by induction of endoplasmic reticulum stress in vitro and in vivo. Prostate Cancer Prostatic Dis, 2013. 16(4): p. 315-22.
  186. Lee, H.-Y., et al., Activation of p53 with Ilimaquinone and Ethylsmenoquinone, Marine Sponge Metabolites, Induces Apoptosis and Autophagy in Colon Cancer Cells. Marine Drugs, 2015. 13(1).
  187. Sakemi, S. and H.H. Sun, Nortopsentins A, B, and C. Cytotoxic and antifungal imidazolediylbis[indoles] from the sponge Spongosorites ruetzleri. The Journal of Organic Chemistry, 1991. 56(13): p. 4304-4307.
  188. Diana, P., et al., Synthesis and antitumor activity of 3-(2-phenyl-1,3-thiazol-4-yl)-1H-indoles and 3-(2-phenyl-1,3-thiazol-4-yl)-1H-7-azaindoles. ChemMedChem, 2011. 6(7): p. 1300-9.
  189. Carbone, A., et al., Synthesis and antiproliferative activity of substituted 3[2-(1H-indol-3-yl)- 1,3-thiazol-4-yl]-1H-pyrrolo[3,2-b]pyridines, marine alkaloid nortopsentin analogues. Curr Med Chem, 2014. 21(14): p. 1654-66.
  190. Carbone, A., et al., Novel 1H-pyrrolo[2,3-b]pyridine derivative nortopsentin analogues: synthesis and antitumor activity in peritoneal mesothelioma experimental models. J Med Chem, 2013. 56(17): p. 7060-72.
  191. Carbone, A., et al., Synthesis and Antiproliferative Activity of Thiazolyl-bis-pyrrolo[2,3-b]pyridines and Indolyl-thiazolyl-pyrrolo[2,3-c]pyridines, Nortopsentin Analogues. Marine Drugs, 2015. 13(1): p. 460-492.
  192. Bielenberg, D.R. and B.R. Zetter, The Contribution of Angiogenesis to the Process of Metastasis. Cancer journal (Sudbury, Mass.), 2015. 21(4): p. 267-273.
  193. Coultas, L., K. Chawengsaksophak, and J. Rossant, Endothelial cells and VEGF in vascular development. Nature, 2005. 438(7070): p. 937-45.
  194. Klagsbrun, M. and M.A. Moses, Molecular angiogenesis. Chem Biol, 1999. 6(8): p. R217-24.
  195. Zhang, S., et al., SKLB1002, a novel potent inhibitor of VEGF receptor 2 signaling, inhibits angiogenesis and tumor growth in vivo. Clin Cancer Res, 2011. 17(13): p. 4439-50.
  196. Matsumoto, T., et al., VEGF receptor-2 Y951 signaling and a role for the adapter molecule TSAd in tumor angiogenesis. EMBO J, 2005. 24(13): p. 2342-53.
  197. Nishi, M., et al., Cell binding isoforms of vascular endothelial growth factor-A (VEGF189) contribute to blood flow-distant metastasis of pulmonary adenocarcinoma. Int J Oncol, 2005. 26(6): p. 1517-24.
  198. Zetter, B.R., Angiogenesis and tumor metastasis. Annu Rev Med, 1998. 49: p. 407-24.
  199. Noujaim, D., et al., N-Myc and Bcl-2 coexpression induces MMP-2 secretion and activation in human neuroblastoma cells. Oncogene, 2002. 21(29): p. 4549-4557.
  200. Criscitiello, C., A. Esposito, and G. Curigliano, Tumor-stroma crosstalk: Targeting stroma in breast cancer. Current Opinion in Oncology, 2014. 26(6): p. 551-555.
  201. Cobleigh, M.A., et al., A Phase I/II Dose-Escalation Trial of Bevacizumab in Previously Treated Metastatic Breast Cancer. Seminars in Oncology, 2003. 30(5 SUPPL. 16): p. 117-124.
  202. Kubota, Y., Tumor angiogenesis and anti-angiogenic therapy. Keio J Med, 2012. 61(2): p. 47-56.
  203. Arai, M., et al., Stylissamide X, a new proline-rich cyclic octapeptide as an inhibitor of cell migration, from an Indonesian marine sponge of Stylissa sp. Bioorg Med Chem Lett, 2012. 22(4): p. 1818-21.
  204. Nguyen, V.T., et al., Matrix metalloproteinases (MMPs) inhibitory effects of an octameric oligopeptide isolated from abalone Haliotis discus hannai. Food Chem, 2013. 141(1): p. 503-9.
  205. Shaala, L.A., et al., Subereamolline A as a Potent Breast Cancer Migration, Invasion and Proliferation Inhibitor and Bioactive Dibrominated Alkaloids from the Red Sea Sponge Pseudoceratina arabica. Marine Drugs, 2012. 10(11): p. 2492-2508.
  206. Aoki, S., et al., Cortistatins A, B, C, and D, anti-angiogenic steroidal alkaloids, from the marine sponge Corticium simplex. J Am Chem Soc, 2006. 128(10): p. 3148-9.
  207. Rodriguez-Nieto, S., et al., Antiangiogenic activity of aeroplysinin-1, a brominated compound isolated from a marine sponge. FASEB J, 2002. 16(2): p. 261-3.
  208. Roskelley, C.D., et al., Inhibition of tumor cell invasion and angiogenesis by motuporamines. Cancer Res, 2001. 61(18): p. 6788-94.
  209. Mathieu, V., et al., Cyclic versus hemi-bastadins. pleiotropic anti-cancer effects: from apoptosis to anti-angiogenic and anti-migratory effects. Molecules, 2013. 18(3): p. 3543-61.
  210. Barbieri, F., et al., Emerging Targets in Pituitary Adenomas: Role of the CXCL12/CXCR4-R7 System. Int J Endocrinol, 2014. 2014: p. 753524.
  211. Cipres, A., et al., Sceptrin, a Marine Natural Compound, Inhibits Cell Motility in a Variety of Cancer Cell Lines. ACS Chemical Biology, 2010. 5(2): p. 195-202.
  212. Spector, I., et al., Latrunculins--novel marine macrolides that disrupt microfilament organization and affect cell growth: I. Comparison with cytochalasin D. Cell Motil Cytoskeleton, 1989. 13(3): p. 127-44.
  213. El Sayed, K.A., D.T. Youssef, and D. Marchetti, Bioactive natural and semisynthetic latrunculins. J Nat Prod, 2006. 69(2): p. 219-23.
  214. Sayed, K.A., et al., Latrunculin A and its C-17-O-carbamates inhibit prostate tumor cell invasion and HIF-1 activation in breast tumor cells. J Nat Prod, 2008. 71(3): p. 396-402.
  215. Lu, H., J. Murtagh, and E.L. Schwartz, The microtubule binding drug laulimalide inhibits vascular endothelial growth factor-induced human endothelial cell migration and is synergistic when combined with docetaxel (taxotere). Mol Pharmacol, 2006. 69(4): p. 1207-15.
  216. Zhao, Q., et al., Ds-echinoside A, a new triterpene glycoside derived from sea cucumber, exhibits antimetastatic activity via the inhibition of NF-kappaB-dependent MMP-9 and VEGF expressions. J Zhejiang Univ Sci B, 2011. 12(7): p. 534-44.
  217. Zhao, Q., et al., Differential effects of sulfated triterpene glycosides, holothurin A1, and 24-dehydroechinoside A, on antimetastasic activity via regulation of the MMP-9 signal pathway. J Food Sci, 2010. 75(9): p. H280-8.
  218. Al Marzouqi, N., et al., Frondoside A inhibits human breast cancer cell survival, migration, invasion and the growth of breast tumor xenografts. European Journal of Pharmacology, 2011. 668(1–2): p. 25-34.
  219. Foudah, A.I., et al., Optimization of marine triterpene sipholenols as inhibitors of breast cancer migration and invasion. ChemMedChem, 2013. 8(3): p. 497-510.
  220. Kotoku, N., et al., Synthesis of BC-ring model of globostellatic acid X methyl ester, an anti-angiogenic substance from marine sponge. Bioorganic & Medicinal Chemistry Letters, 2008. 18(12): p. 3532-3535.
  221. Kazlauskas, R., et al., Heteronemin, a new scalarin type sesterterpene from the sponge Heteronema erecta. Tetrahedron Letters, 1976. 17(30): p. 2631-2634.
  222. Kopf, S., et al., In vitro characterisation of the anti-intravasative properties of the marine product heteronemin. Arch Toxicol, 2013. 87(10): p. 1851-61.
  223. Bernstein, J., et al., Sarcophine, a new epoxy cembranolide from marine origin. Tetrahedron, 1974. 30(16): p. 2817-2824.
  224. Sawant, S.S., et al., Biocatalytic and antimetastatic studies of the marine cembranoids sarcophine and 2-epi-16-deoxysarcophine. J Nat Prod, 2006. 69(7): p. 1010-3.
  225. Hassan, H.M., et al., Semisynthetic analogues of the marine cembranoid sarcophine as prostate and breast cancer migration inhibitors. Bioorganic & Medicinal Chemistry, 2011. 19(16): p. 4928-4934.
  226. Radwan, M.M., et al., Sinulodurins A and B, antiproliferative and anti-invasive diterpenes from the soft coral Sinularia dura. J Nat Prod, 2008. 71(8): p. 1468-71.
  227. Warabi, K., et al., Strongylophorine-26, a new meroditerpenoid isolated from the marine sponge Petrosia (Strongylophora) corticata that exhibits anti-invasion activity. J Nat Prod, 2004. 67(8): p. 1387-9.
  228. Kong, D., et al., Antiproliferative and Antiangiogenic Activities of Smenospongine, a Marine Sponge Sesquiterpene Aminoquinone. Marine Drugs, 2011. 9(2): p. 154-161.
  229. Wen, Z.-H., et al., A neuroprotective sulfone of marine origin and the in vivo anti-inflammatory activity of an analogue. European Journal of Medicinal Chemistry, 2010. 45(12): p. 5998-6004.
  230. Takei, M., et al., Polyacetylenediols regulate the function of human monocyte-derived dendritic cells. International Immunopharmacology, 2010. 10(8): p. 913-921.
  231. Pearson, G., et al., Mitogen-activated protein (MAP) kinase pathways: Regulation and physiological functions. Endocrine Reviews, 2001. 22(2): p. 153-183.
  232. Brown, M.D. and D.B. Sacks, Protein scaffolds in MAP kinase signalling. Cell Signal, 2009. 21(4): p. 462-9.
  233. Santen, R.J., et al., The role of mitogen-activated protein (MAP) kinase in breast cancer. The Journal of Steroid Biochemistry and Molecular Biology, 2002. 80(2): p. 239-256.
  234. Avruch, J., MAP kinase pathways: The first twenty years. Biochimica et Biophysica Acta - Molecular Cell Research, 2007. 1773(8): p. 1150-1160.
  235. Downward, J., Targeting RAS signalling pathways in cancer therapy. Nat Rev Cancer, 2003. 3(1): p. 11-22.
  236. Griner, E.M. and M.G. Kazanietz, Protein kinase C and other diacylglycerol effectors in cancer. Nature Reviews Cancer, 2007. 7(4): p. 281-294.
  237. Slomovitz, B.M. and R.L. Coleman, The PI3K/AKT/mTOR pathway as a therapeutic target in endometrial cancer. Clinical Cancer Research, 2012. 18(21): p. 5856-5864.
  238. Chambers, J.W. and P.V. LoGrasso, Mitochondrial c-Jun N-terminal kinase (JNK) signaling initiates physiological changes resulting in amplification of reactive oxygen species generation. J Biol Chem, 2011. 286(18): p. 16052-62.
  239. Cuadrado, A. and A.R. Nebreda, Mechanisms and functions of p38 MAPK signalling. Biochemical Journal, 2010. 429(3): p. 403-417.
  240. Goldstein, D.M., N.S. Gray, and P.P. Zarrinkar, High-throughput kinase profiling as a platform for drug discovery. Nat Rev Drug Discov, 2008. 7(5): p. 391-7.
  241. Gross, S., et al., Targeting cancer with kinase inhibitors. The Journal of Clinical Investigation, 2015. 125(5): p. 1780-1789.
  242. Skropeta, D., N. Pastro, and A. Zivanovic, Kinase Inhibitors from Marine Sponges. Marine Drugs, 2011. 9(10): p. 2131-2154.
  243. Tasdemir, D., et al., Aldisine alkaloids from the Philippine sponge Stylissa massa are potent inhibitors of mitogen-activated protein kinase kinase-1 (MEK-1). J Med Chem, 2002. 45(2): p. 529-32.
  244. Segraves, N.L. and P. Crews, A Madagascar Sponge Batzella sp. as a source of alkylated iminosugars. J Nat Prod, 2005. 68(1): p. 118-21.
  245. Kortmansky, J. and G.K. Schwartz, Bryostatin-1: a novel PKC inhibitor in clinical development. Cancer Invest, 2003. 21(6): p. 924-36.
  246. Kinnel, R.B. and P.J. Scheuer, 11-Hydroxystaurosporine: a highly cytotoxic, powerful protein kinase C inhibitor from a tunicate. The Journal of Organic Chemistry, 1992. 57(23): p. 6327-6329.
  247. Isbrucker, R.A., et al., Early effects of lasonolide a on pancreatic cancer cells. J Pharmacol Exp Ther, 2009. 331(2): p. 733-9.
  248. Alvi, K.A., et al., Penazetidine A, an alkaloid inhibitor of protein kinase C. Bioorganic & Medicinal Chemistry Letters, 1994. 4(20): p. 2447-2450.
  249. Marion, F., et al., Liphagal, a selective inhibitor of PI3 kinase a isolated from the sponge Aka coralliphaga: Structure elucidation and biomimetic synthesis. Organic Letters, 2006. 8(2): p. 321-324.
  250. Pereira, A.R., et al., Synthesis of phosphatidylinositol 3-kinase (PI3K) inhibitory analogues of the sponge meroterpenoid liphagal. Journal of Medicinal Chemistry, 2010. 53(24): p. 8523-8533.
  251. Alvarez-Manzaneda, E., et al., Enantioselective Total Synthesis of the Selective PI3 Kinase Inhibitor Liphagal. Organic Letters, 2010. 12(20): p. 4450-4453.
  252. Piplani, H., et al., Dolastatin, along with Celecoxib, stimulates apoptosis by a mechanism involving oxidative stress, membrane potential change and PI3-K/AKT pathway down regulation. Biochimica et Biophysica Acta (BBA) - General Subjects, 2013. 1830(11): p. 5142-5156.
  253. Janmaat, M.L., et al., Kahalalide F induces necrosis-like cell death that involves depletion of ErbB3 and inhibition of Akt signaling. Molecular Pharmacology, 2005. 68(2): p. 502-510.
  254. García-Fernández, L.F., et al., Aplidin™ induces the mitochondrial apoptotic pathway via oxidative stress-mediated JNK and p38 activation and protein kinase C d. Oncogene, 2002. 21(49): p. 7533-7544.
  255. Lee, K.H., et al., Inhibition of protein synthesis and activation of stress-activated protein kinases by onnamide A and theopederin B, antitumor marine natural products. Cancer Sci, 2005. 96(6): p. 357-64.
  256. Roychowdhury, S. and A.M. Chinnaiyan, Translating genomics for precision cancer medicine. Annu Rev Genomics Hum Genet, 2014. 15: p. 395-415.
  257. Encinar, J.A., et al., In silico approach for the discovery of new PPARgamma modulators among plant-derived polyphenols. Drug Des Devel Ther, 2015. 9: p. 5877-95.
  258. Galiano, V., et al., Looking for inhibitors of the dengue virus NS5 RNA-dependent RNA-polymerase using a molecular docking approach. Drug Des Devel Ther, 2016. 10: p. 3163-3181.
  259. Thanki, K., et al., Oral delivery of anticancer drugs: challenges and opportunities. J Control Release, 2013. 170(1): p. 15-40.
  260. Montaser, R. and H. Luesch, Marine natural products: a new wave of drugs? Future Med Chem, 2011. 3(12): p. 1475-89.
  261. Blunt, J. and M.H.G. Munro, Dictionary of marine natural products, with CD-ROM. 2008, Boca Raton: Chapman & Hall/CRC. cxix, 2415
  262. Veber, D.F., et al., Molecular properties that influence the oral bioavailability of drug candidates. J Med Chem, 2002. 45(12): p. 2615-23.
  263. Choi, H., et al., NPCARE: database of natural products and fractional extracts for cancer regulation. J Cheminform, 2017. 9: p. 2.
  264. Newman, D.J., Developing natural product drugs: Supply problems and how they have been overcome. Pharmacol Ther, 2016. 162: p. 1-9.
  265. Grienke, U., J. Silke, and D. Tasdemir, Bioactive compounds from marine mussels and their effects on human health. Food Chemistry, 2014. 142: p. 48-60.
  266. Tornero, V. and G. Hanke, Chemical contaminants entering the marine environment from sea-based sources: A review with a focus on European seas. Marine Pollution Bulletin, 2016. 112(1–2): p. 17-38.
  267. Leal, M.C., et al., Coral aquaculture to support drug discovery. Trends in Biotechnology, 2013. 31(10): p. 555-561.
  268. Cuevas, C. and A. Francesch, Development of Yondelis[registered sign] (trabectedin, ET-743). A semisynthetic process solves the supply problem. Natural Product Reports, 2009. 26(3): p. 322-337.




More papers ...

  • Hughes JP, Rees S, Kalindjian SB, Philpott KL. Principles of early drug discovery. Br J Pharmacol. 2011; 162(6):1239-49.
  • Handbook of Marine Natural Products. 2012. Editors: Ernesto Fattorusso, William H. Gerwick, Orazio Taglialatela-Scafati
  • Encyclopedia of Marine Natural Products, 2nd, Greatly Enlarged EditionEncyclopedia of Marine Natural Products. 2014. Jean-Michel Kornprobst
  • DOI: 10.1007/978-3-319-07145-9 eBook ISBN 978-3-319-07145-9. 2015. Handbook of Anticancer Drugs from Marine Origin. Se-Kwon Kim ed.