CSS Drop Down Menu by

Publications → Papers → References

Turbot (Scophthalmus maximus) Nk-lysin induces protection against the pathogenic parasite Philasterides dicentrarchi via membrane disruption. 2018. Fish Shellfish Immunol. 82:190-199.

  1. S. Kim, J. Cho, E. Lee, S. Kwon, S. Kim, Y. Nam, K. Kim. Pseudocohnilembus persalinus (Ciliophora: Scuticociitida) is an additional species causing scuticociliatosis in olive flounder Paralichthys olivaceus. Dis. Aquat. Org., 62 (2004), pp. 239-244.
  2. A. Dragesco, J. Dragesco, F. Coste, C. Gasc, B. Romestand, J. Raymond, G. Bouix. Philasterides dicentrarchi, n. sp., (ciliophora, scuticociliatida), a histophagous opportunistic parasite of Dicentrarchus labrax (Linnaeus, 1758), a reared marine fish. Eur. J. Protistol., 31 (1995), pp. 327-340.
  3. B.L. Munday, P.J. O'Donoghue, M. Watts, K. Rough, T. Hawkesford. Fatal encephalitis due to the scuticociliate Uronema nigricans in sea-caged, southern bluefin tuna Thunnus maccoyii. Dis. Aquat. Org., 30 (1997), pp. 17-25.
  4. I. Dykova, A. Figueras. Histopathological changes in turbot Scophthalmus maximus due to a histophagous ciliate. Dis. Aquat. Org., 18 (1994), pp. 5-9.
  5. E. Sterud, M.K. Hansen, T.A. Mo Systemic infection with Uronema-like ciliates in farmed turbot, Scophthalmus maximus (L.). J. Fish. Dis., 23 (2000), pp. 33-37.
  6. R. Iglesias, A. Paramá, M. Alvarez, J. Leiro, J. Fernández, M. Sanmartín. Philasterides dicentrarchi (Ciliophora, Scuticociliatida) as the causative agent of scuticociliatosis in farmed turbot Scophthalmus maximus in Galicia (NW Spain). Dis. Aquat. Org., 46 (2001), pp. 47-55.
  7. M. Ramos, A. Costa, T. Barandela, A. Saraiva, P. Rodrigues. Scuticociliate infection and pathology in cultured turbot Scophthalmus maximus from the north of Portugal. Dis. Aquat. Org., 74 (2007), pp. 249-253.
  8. D.H. Lynn, M. Strüder-Kypke. Scuticociliate endosymbionts of echinoids (Phylum Echinodermata): Phylogenetic relationships among species in the genera Entodiscus, Plagiopyliella, Thyrophylax, and Entorhipidium (Phylum Ciliophora). J. Parasitol., 91 (2005), pp. 1190-1199.
  9. H. Small, D. Neil, A. Taylor, G. Coombs. Identification and partial characterisation of metalloproteases secreted by a Mesanophrys-like ciliate parasite of the Norway lobster Nephrops norvegicus. Dis. Aquat. Org., 67 (2005), pp. 225-231.
  10. R. Iglesias, A. Paramá, M. Álvarez, J. Leiro, M.L. Sanmartín. Antiprotozoals effective in vitro against the scuticociliate fish pathogen Philasterides dicentrarchi. Dis. Aquat. Org., 49 (2002), pp. 191-197.
  11. A.-P. De Felipe, J. Lamas, R.-A. Sueiro, I. Folgueira, J.-M. Leiro. New data on flatfish scuticociliatosis reveal that Miamiensis avidus and Philasterides dicentrarchi are different species. Parasitology, 144 (2017), pp. 1394-1411.
  12. A. Paramá, R. Iglesias, M. Álvarez, J. Leiro, C. Aja, M. Sanmartín. Philasterides dicentrarchi (Ciliophora, Scuticociliatida): experimental infection and possible routes of entry in farmed turbot (Scophthalmus maximus). Aquaculture, 217 (2003), pp. 73-80.
  13. J.M. Quintela, C. Peinador, L. González, R. Iglesias, A. Paramá, F. Álvarez, M.L. Sanmartín, R. Riguera. Piperazine N-substituted naphthyridines, pyridothienopyrimidines and pyridothienotriazines: new antiprotozoals active against Philasterides dicentrarchi. Eur. J. Med. Chem., 38 (2003), pp. 265-275.
  14. J. Leiro, J.A. Arranz, R. Iglesias, F.M. Ubeira, M.L. Sanmartín. Effects of the histiophagous ciliate Philasterides dicentrarchi on turbot phagocyte responses. Fish Shellfish Immunol., 17 (2004), pp. 27-39.
  15. A. Paramá, R. Iglesias, M.F. Álvarez, M.L. Sanmartín, J. Leiro. Chemotactic Responses of the Fish-parasitic Scuticociliate Philasterides dicentrarchi to Blood and Blood Components of the Turbot Scophthalmus maximus, Evaluated Using a New Microplate Multiassay. J. of Microbiological Methods, vol. 58 (2004), pp. 361-366.
  16. A. Paramá, A. Luzardo, J. Blanco-Méndez, M. Sanmartín, J. Leiro. In vitro efficacy of glutaraldehyde-crosslinked chitosan microspheres against the fish-pathogenic ciliate Philasterides dicentrarchi. Dis. Aquat. Org., 64 (2005), pp. 151-158.
  17. P. Morais, J. Lamas, M.L. Sanmartín, F. Orallo, J. Leiro. Resveratrol induces mitochondrial alterations, autophagy and a cryptobiosis-like state in scuticociliates. Protist, 160 (2009), pp. 552-564.
  18. B. Budiño, J. Leiro, S. Cabaleiro, J. Lamas. Characterization of Philasterides dicentrarchi isolates that are pathogenic to turbot: Serology and cross-protective immunity. Aquaculture, 364–365 (2012), pp. 130-136.
  19. N. Mallo, J. Lamas, J.M. Leiro. Alternative oxidase inhibitors as antiparasitic agents against scuticociliatosis. Parasitology, 141 (2014), pp. 1311-1321.
  20. R. Iglesias, A. Paramá, M. Álvarez, J. Leiro, C. Aja, M. Sanmartín. In vitro growth requirements for the fish pathogen Philasterides dicentrarchi (Ciliophora, Scuticociliatida). Vet. Parasitol., 111 (2003), pp. 19-30.
  21. R. Iglesias, A. Paramá, M.F. Álvarez, J. Leiro, F.M. Ubeira, M.L. Sanmartín. Philasterides dicentrarchi (Ciliophora: scuticociliatida) expresses surface immobilization antigens that probably induce protective immune responses in turbot. Parasitology, 126 (2003), pp. 125-134.
  22. J. Lamas, M.L. Sanmartín, A.I. Paramá, R. Castro, S. Cabaleiro, M. V Ruiz De Ocenda, J.L. Barja, J. Leiro. Optimization of an inactivated vaccine against a scuticociliate parasite of turbot: effect of antigen, formalin and adjuvant concentration on antibody response and protection against the pathogen. Aquaculture, 278 (2008), pp. 22-26.
  23. E.H. Lee, K.H. Kim. Can the surface immobilization antigens of Philasterides dicentrarchi (Ciliophora: scuticociliatida) be used as target antigens to develop vaccines in cultured fish?. Fish Shellfish Immunol., 24 (2008), pp. 142-146.
  24. M.L. Sanmartín, A. Paramá, R. Castro, S. Cabaleiro, J. Leiro, J. Lamas, J.L. Barja. Vaccination of turbot, Psetta maxima (L.), against the protozoan parasite Philasterides dicentrarchi: effects on antibody production and protection. J. Fish. Dis., 31 (2008), pp. 135-140.
  25. A. Sitjà-Bobadilla, O. Palenzuela, P. Alvarez-Pellitero. Immune response of turbot, Psetta maxima (L.) (Pisces: Teleostei), to formalin-killed scuticociliates (Ciliophora) and adjuvanted formulations. Fish Shellfish Immunol., 24 (2008), pp. 1-10.
  26. O. Palenzuela, A. Sitjà-Bobadilla, A. Riaza, R. Silva, J. Arán, P. Alvarez-Pellitero. Antibody responses of turbot Psetta maxima against various antigen formulations of Scuticociliates ciliophora. Dis. Aquat. Org., 86 (2009), pp. 123-134.
  27. L. León-Rodríguez, A. Luzardo-Álvarez, J. Blanco-Méndez, J. Lamas, J. Leiro. A vaccine based on biodegradable microspheres induces protective immunity against scuticociliatosis without producing side effects in turbot. Fish Shellfish Immunol., 33 (2012), pp. 21-27.
  28. L. León-Rodríguez, A. Luzardo-Álvarez, J. Blanco-Méndez, J. Lamas, J. Leiro. Biodegradable microparticles covalently linked to surface antigens of the scuticociliate parasite P. dicentrarchi promote innate immune responses In vitro. Fish Shellfish Immunol., 34 (2013), pp. 236-243.
  29. B. Budiño, J. Lamas, A. González, M.P. Pata, S. Devesa, J.A. Arranz, J. Leiro. Coexistence of several Philasterides dicentrarchi strains on a turbot fish farm. Aquaculture, 322–323 (2011), pp. 23-32.
  30. B.G. Pardo, A. Millán, A. Gómez-Tato, C. Fernández, C. Bouza, J.A. Alvarez-Dios, S. Cabaleiro, J. Lamas, J.M. Leiro, P. Martínez. Gene expression profiles of spleen, liver, and head kidney in turbot (Scophthalmus maximus) along the infection process with Philasterides dicentrarchi using an immune-enriched oligo-microarray. Mar. Biotechnol., 14 (2012), pp. 570-582.
  31. M.C. Piazzon, G.F. Wiegertjes, J. Leiro, J. Lamas. Turbot resistance to Philasterides dicentrarchi is more dependent on humoral than on cellular immune responses. Fish Shellfish Immunol., 30 (2011), pp. 1339-1347.
  32. M. Zhang, H. Long, L. Sun A. NK-lysin from Cynoglossus semilaevis enhances antimicrobial defense against bacterial and viral pathogens. Dev. Comp. Immunol., 40 (2013), pp. 258-265.
  33. M. Zhang, M.-F. Li, L. Sun. NKLP27: a teleost NK-lysin peptide that modulates immune response, induces degradation of bacterial DNA, and inhibits bacterial and viral infection. PLoS One, 9 (2014) e106543.
  34. S. Cai, J. Wang, K. Wang, D. Chen, X. Dong, T. Liu, Y. Zeng, X. Wang, D. Wu. Expression, purification and antibacterial activity of NK-lysin mature peptides from the channel catfish (Ictalurus punctatus). Appl. Sci., 6 (2016), p. 240.
  35. G.L. Wang, M.C. Wang, Y.L. Liu, Q. Zhang, C.F. Li, P.T. Liu, E.Z. Li, P. Nie, H.X. Xie. Identification, expression analysis, and antibacterial activity of NK-lysin from common carp Cyprinus carpio. Fish Shellfish Immunol., 73 (2018), pp. 11-21.
  36. P. Pereiro, A. Romero, P. Díaz-Rosales, A. Estepa, A. Figueras, B. Novoa. Nucleated teleost erythrocytes play an Nk-lysin- and autophagy-dependent role in antiviral immunity. Front. Immunol., 8 (2017), p. 1458.
  37. H. Schröder-Borm, R. Bakalova, J. Andrä. The NK-lysin derived peptide NK-2 preferentially kills cancer cells with increased surface levels of negatively charged phosphatidylserine. FEBS Lett., 579 (2005), pp. 6128-6134.
  38. K. Fan, H. Li, Z. Wang, W. Du, W. Yin, Y. Sun, J. Jiang. Expression and purification of the recombinant porcine NK-lysin in Pichia pastoris and observation of anticancer activity In vitro. Prep. Biochem. Biotechnol., 46 (2016), pp. 65-70.
  39. T. Jacobs, H. Bruhn, I. Gaworski, B. Fleischer, M. Leippe. NK-lysin and its shortened analog NK-2 exhibit potent activities against Trypanosoma cruzi. Antimicrob. Agents Chemother., 47 (2003), pp. 607-613.
  40. C. Gelhaus, T. Jacobs, J. Andrä, M. Leippe. The antimicrobial peptide NK-2, the core region of mammalian NK-lysin, kills intraerythrocytic Plasmodium falciparum. Antimicrob. Agents Chemother., 52 (2008), pp. 1713-1720.
  41. Y.H. Hong, H.S. Lillehoj, G.R. Siragusa, D.D. Bannerman, A.S. Hyun Lillehoj, A.R. Gregory Siragusa, B.D. Douglas Bannerman, E.P. Lillehoj D. A. Antimicrobial activity of chicken NK-lysin against Eimeria sporozoites Avian Dis., 52 (2008), pp. 302-305.
  42. J.M. Ruysschaert, E. Goormaghtigh, F. Homblé, M. Andersson, E. Liepinsh, G. Otting. Lipid membrane binding of NK-lysin. FEBS Lett., 425 (1998), pp. 341-344.
  43. H. Bruhn, M. Leippe. Comparative modeling of amoebapores and granulysin based on the NK-lysin structure - Structural and functional implications. Biol. Chem., 380 (1999), pp. 1001-1007.
  44. M. Andersson, H. Gunne, B. Agerberth, A. Boman, T. Bergman, R. Sillard, H. Jörnvall, V. Mutt, B. Olsson, H. Wigzell. NK-lysin, a novel effector peptide of cytotoxic T and NK cells. Structure and cDNA cloning of the porcine form, induction by interleukin 2, antibacterial and antitumour activity. EMBO J., 14 (1995), pp. 1615-1625.
  45. E. Liepinsh, M. Andersson, J.M. Ruysschaert, G. Otting. Saposin fold revealed by the NMR structure of NK-lysin. Nat. Struct. Biol., 4 (1997), pp. 793-795.
  46. Z. Wang, E. Choice, A. Kaspar, D. Hanson, S. Okada, S.-C. Lyu, A.M. Krensky, C. Clayberger. Bactericidal and tumoricidal activities of synthetic peptides derived from granulysin. J. Immunol., 165 (2000), pp. 1486-1490.
  47. K. Hristova, M.E. Selsted, S.H. White, Critical role of of lipid composition in membrane permeabilization by rabbit neutrophil defensins. J. Biol. Chem., 26 (1997), pp. 24224-24233.
  48. P. Pereiro, G. Forn-Cuni, A. Figueras, B. Novoa. Pathogen-dependent role of turbot (Scophthalmus maximus) interferon-gamma. Fish Shellfish Immunol., 59 (2016), pp. 25-35.
  49. S. Rozen, H. Skaletsky. Primer3 on the WWW for general users and for biologist programmers. Meth. Mol. Biol., 132 (2000), pp. 365-386.
  50. M.W. Pfaffl. A new mathematical model for relative quantification in real-time RT–PCR. Nucleic Acids Res., 29 (2001), pp. 2002-2007.
  51. J.D. Thompson, D.G. Higgins, T.J. Gibson, W. CLUSTAL Improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res., 22 (1994), pp. 4673-4680.
  52. Y. Shen, J. Maupetit, P. Derreumaux, P. Tufféry. Improved PEP-FOLD approach for peptide and miniprotein structure prediction. J. Chem. Theor. Comput., 10 (2014), pp. 4745-4758.
  53. N. Mallo, J. Lamas, A.-P. DeFelipe, R.-A. Sueiro, F. Fontenla, J.-M. Leiro. Enzymes involved in pyrophosphate and calcium metabolism as targets for anti-scuticociliate chemotherapy. J. Eukaryot. Microbiol., 63 (2016), pp. 505-515.
  54. C. Piazzon, J. Lamas, J.M. Leiro. Role of scuticociliate proteinases in infection success in turbot, Psetta maxima (L.). Parasite Immunol., 33 (2011), pp. 535-544.
  55. S.T. Rodríguez-Ramilo, J. Fernández, M.A. Toro, C. Bouza, M. Hermida, C. Fernández, B.G. Pardo, S. Cabaleiro, P. Martínez. Uncovering QTL for resistance and survival time to Philasterides dicentrarchi in turbot (Scophthalmus maximus). Anim. Genet., 44 (2013), pp. 149-157.
  56. Z. Huang, A. Ma, D. Xia, X. Wang, Z. Sun, X. Shang, Z. Yang, J. Qu. Immunological characterization and expression of lily-type lectin in response to environmental stress in turbot (Scophthalmus maximus). Fish Shellfish Immunol., 58 (2016), pp. 323-331.
  57. M. Andersson, T. Curstedt, H. Jörnvall, J. Johansson. An amphipathic helical motif common to tumourolytic polypeptide NK-lysin and pulmonary surfactant polypeptide SP-B. FEBS Lett., 362 (1995), pp. 328-332.
  58. J. Tschopp, K. Hofmann. Cytotoxic T cells: more weapons for new targets? Trends Microbiol., 4 (1996), pp. 91-95.
  59. S. Stenger, D.A. Hanson, R. Teitelbaum, P. Dewan, K.R. Niazi, C.J. Froelich, T. Ganz, S. Thoma-Uszynski, A. Melián, C. Bogdan, S.A. Porcelli, B.R. Bloom, A.M. Krensky, R.L. Modlin. An antimicrobial activity of cytolytic T cells nediated by granulysin. Science, 282 (1998), pp. 121-125.
  60. J. Andrä, M. Leippe. Candidacidal activity of shortened synthetic analogs of amoebapores and NK-lysin. Med. Microbiol. Immunol., 188 (1999), pp. 117-124.
  61. D. Andreu, C. Carren, C. Linde, H.G. Boman, M. Andersson. Identification of an anti-mycobacterial domain in NK-lysin and granulysin. Biochem. J., 344 (1999), pp. 845-849.
  62. A.M. Krensky. Granulysin, a novel antimicrobial peptide of cytolytic T lymphocytes and natural killer cells. Biochem. Pharmacol., 59 (2000), pp. 317-320.
  63. A. Hata, L. Zerboni, M. Sommer, A.A. Kaspar, C. Clayberger, A.M. Krensky, A.M. Arvin. Granulysin blocks replication of varicella-zoster virus and triggers apoptosis of infected cells. Viral Immunol., 14 (2001), pp. 125-133.
  64. J. Kumar, S. Okada, C. Clayberger, A.M. Krensky. Granulysin: a novel antimicrobial. Expet Opin. Invest. Drugs, 10 (2001), pp. 321-329.
  65. H. Bruhn, B. Riekens, O. Berninghausen, M. Leippe. Amoebapores and NK-lysin, members of a class of structurally distinct antimicrobial and cytolytic peptides from protozoa and mammals: a comparative functional analysis. Biochem. J., 375 (2003), pp. 737-744.
  66. F. Dotiwala, S. Mulik, R.B. Polidoro, J.A. Ansara, B.A. Burleigh, M. Walch, R.T. Gazzinelli, J. Lieberman. Killer lymphocytes use granulysin, perforin and granzymes to kill intracellular parasites. Nat. Med., 22 (2016), pp. 210-216.
  67. Y.H. Hong, H.S. Lillehoj, R.A. Dalloul, W. Min, K.B. Miska, W. Tuo, S.H. Lee, J.Y. Han, E.P. Lillehoj. Molecular cloning and characterization of chicken NK-lysin. Vet. Immunol. Immunopathol., 110 (2006), pp. 339-347.
  68. S.H. Lee, H.S. Lillehoj, W. Tuo, C.A. Murphy, Y.H. Hong, E.P. Lillehoj. Parasiticidal activity of a novel synthetic peptide from the core a-helical region of NK-lysin. Vet. Parasitol., 197 (2013), pp. 113-121.
  69. Q. Wang, Y. Wang, P. Xu, Z. Liu. NK-lysin of channel catfish: gene triplication, sequence variation, and expression. analysis Mol. Immunol., 43 (2006), pp. 1676-1686.
  70. I. Hirono, H. Kondo, T. Koyama, N.R. Arma, J.Y. Hwang, R. Nozaki, N. Midorikawa, T. Aoki. Characterization of Japanese flounder (Paralichthys olivaceus) NK-lysin, an antimicrobial peptide. Fish Shellfish Immunol., 22 (2007), pp. 567-575.
  71. P. Pereiro, M. Varela, P. Diaz-Rosales, A. Romero, S. Dios, A. Figueras, B. Novoa. Zebrafish Nk-lysins: first insights about their cellular and functional diversification. Dev. Comp. Immunol., 51 (2015), pp. 148-159.
  72. Q.-J. Zhou, J. Wang, M. Liu, Y. Qiao, W.-S. Hong, Y.-Q. Su, K.-H. Han, Q.-Z. Ke, W.-Q. Zheng. Identification, expression and antibacterial activities of an antimicrobial peptide NK-lysin from a marine fish Larimichthys crocea. Fish Shellfish Immunol., 55 (2016), pp. 195-202.
  73. Y. Huang, Q. Zheng, J. Niu, J. Tang, B. Wang, E.D. Abarike, Y. Lu, J. Cai, J. Jian. NK-lysin from Oreochromis niloticus improves antimicrobial defence against bacterial pathogens. Fish Shellfish Immunol., 72 (2018), pp. 259-265.
  74. C.E. Willett, A. Cortes, A. Zuasti, A.G. Zapata. Early hematopoiesis and developing lymphoid organs in the zebrafish. Dev. Dynam., 214 (1999), pp. 323-336.
  75. J.H.W.M. Rombout, H.B.T. Huttenhuis, S. Picchietti, G. Scapigliati. Phylogeny and ontogeny of fish leucocytes. Fish Shellfish Immunol., 19 (2005), pp. 441-455.
  76. J. Yan, K.-R. Wang, R. Chen, J.-J. Song, B.-Z. Zhang, W. Dang, W. Zhang, R. Wang. Membrane active antitumor activity of NK-18, a mammalian NK-lysin-derived cationic antimicrobial peptide. Biochimie, 94 (2012), pp. 184-191.
  77. J. Yan, K. Wang, W. Dang, R. Chen, J. Xie, B. Zhang, J. Song, R. Wang. Two hits are better than one: membrane-active and DNA binding-related double-action mechanism of NK-18, a novel antimicrobial peptide derived from mammalian NK-lysin. Antimicrob. Agents Chemother., 57 (2013), pp. 220-228.
  78. P. Díaz-Rosales, A. Romero, P. Balseiro, S. Dios, B. Novoa, A. Figueras. Microarray-based identification of differentially expressed genes in families of turbot (Scophthalmus maximus) after infection with Viral Haemorrhagic Septicaemia Virus (VHSV). Mar. Biotechnol., 14 (2012), pp. 515-529.