shaker.umh.es menu
CSS Drop Down Menu by PureCSSMenu.com


Publications → Papers → References

Chromatin immunoprecipitation and high throughput sequencing of SVCV-infected zebrafish reveals novel epigenetic histone methylation patterns involved in antiviral immune response. Medina-Gali, R.M., Bello-Pérez, M., Martínez-López, A., Falcó, A., Ortega-Villaizan, M.M., Encinar, J.A., Novoa, B., Coll, J., & Perez, L. 2018. 82, 514-521.


  1. J. Quintin, S.S. Cheng, J.W.M. van der Mer, M.G. Netea. Innate immune memory: towards a better understanding of host defense mechanisms. Curr. Opin. Immunol., 29 (2014), 1-7.
  2. D.L. Northrup, K. Zhao. Application of ChIP-Seq and related techniques to the study of immune function. Immunity, 34 (2011), 830-842.
  3. A.M. Woodworth, A.F. Holloway. The role of epigenetic regulation in transcriptional memory in the immune system. Adv. Protein Chem. Struct., 106 (2017), 43-69.
  4. A. Estepa, J. Coll. Innate multigene family memories are implicated in viral-survivor zebrafish phenotype. PLoS One, 10 (8) (2015), Article e0135483, 10.1371/journal.pone.0135483.
  5. V. Briolat, L. Jouneau, R. Carvalho, N. Palha, C. Langevin, P. Herbomel, O. Schwartz, H.P. Spaink, J.P. Levraud, P. Boudinot. Contrasted innate responses to two viruses in zebrafish: insights into the ancestral repertoire of vertebrates IFN-stimulated genes. J. Immunol., 192 (2014), 4328-4341.
  6. H.K. Cho, J. Kim, J.Y. Moon, B.-H. Nam, Y.-O. Kim, W.-J. Kim, J.Y. Park, C.M. An, J. Cheong, H.J. Kong. Microarray analysis of gene expression in olive flounder liver infected with viral haemorrhagic septicaemia virus (VHSV). Fish Shellfish Immunol., 49 (2016), 66-78.
  7. P. Encinas, M.A. Rodríguez-Milla, B. Novoa, A. Estepa, A. Figueras, J. Coll. Zebrafish fin immune responses during high mortality infections with viral haemorrhagic septicemia rhabdovirus. A proteomic and transcriptomic approach. BMC Genom., 11 (2010), p. 518.
  8. P. Encinas, P. Garcia-Valtanen, B. Chinchilla, E. Gomez-Casado, A. Estepa, J. Coll. Identification of multipath genes differentially expressed in pathway-targeted microarrays in zebrafish infected and surviving spring viremia carp virus (SVCV) suggest preventive drug candidates. PLoS One, 8 (2013), Article e73553.
  9. B. Novoa, A. Romero, V. Mulero, I. Rodríguez, I. Fernández, A. Figueras. Zebrafish (Danio rerio) as a model for the study of vaccination against viral haemorrhagic septicemia virus (VHSV). Vaccine, 24 (2006),5806-5816.
  10. A. Ruyra, M. Cano-Sarabia, P. Garcia-Valtanen, D. Yero, I. Gibert, S. MacKenzie, A. Estepa, D. Maspoch, N. Roher. Targeting and stimulation of the zebrafish (Danio rerio) innate immune system with LPS/dsRNA-loaded nanoliposomes. Vaccine, 32 (2014), 3955-3962.
  11. G.E. Sanders, W.N. Batts, J.R. Winton. Susceptibility of zebrafish (Danio rerio) to a model pathogen, spring viremia of carp virus. Comp. Med., 53 (2003), 514-521.
  12. M. Varela, A. Figueras, B. Novoa. Modelling viral infections using zebrafish: innate immune response and antiviral research. Antivir. Res., 139 (2017), 59-68.
  13. U. Ashraf, Y. Lu, L. Lin, J. Yuan, M. Wang, X. Liu. Spring viremia of carp virus: recent advances. J. Gen. Virol., 97 (2016), 1037-1051.
  14. García-Valtanen, P., Martínez-López, A., López-Muñoz, A., Bello-Perez, M., Medina-Gali, R.M., Ortega-Villaizán, M.D., Varela, M., Figueras, A., Mulero, V., Novoa, B., Estepa, A., Coll, J. Zebra fish lacking adaptive immunity acquire an antiviral alert state characterized by upregulated gene expression of apoptosis, multigene families, and interferon-related genes. Front. Immunol., 8 (2017), 121, 10.3389/fimmu.2017.00121.
  15. K.L. Livak, T.D. Schmittgen. Analysis of relative gene expression data using real-time quantitative PCR and the 2-DDT method. Methods, 25 (2001), 402-408.
  16. Y. Wang, H. Zhang, Y. Lu, F. Wang, L. Liu, J. Liu, X. Liu. Comparative transcriptome analysis of zebrafish (Danio rerio) brain and spleen infected with spring viremia of carp virus (SVCV). Fish Shellfish Immunol., 69 (2017), 35-45.
  17. D. Robledo et al. Gene expression comparison of resistant and susceptible Atlantic salmon fry challenged with infectious pancreatic necrosis virus reveals a marked contrast in immune response. BMC Genom., 17 (2016), 279-294.
  18. M. Adamek, K. Rakus, J. Chyb, G. Brodgen, A. Huebner, I. Irnazarow, D. Steinhagen. Interferon type I responses to virus infections in carp cells: in vitro studies on Cyprinid herpesvirus 3 and Rhabdovirus carpio infections. Fish Shellfish Immunol., 33 (2012), 482-493.
  19. D. Aggad, M. Mazel, P. Boudinot, K.E. Mogensen, O.J. Hamming, R. Hartmann, S. Kotenko, P. Herbomel, G. Luftfalla, J.P. Levraud. The two groups of zebrafish virus-induced interferons signal via distinct receptors with specific and shared chains. J. Immunol., 183 (2009), 3924-3931.
  20. Z. Huang, S. Chen, J. Liu, J. Xiao, J. Yan, H. Feng. IFNa of black carp is an antiviral cytokine modified with N-linked glycosylation. Fish Shellfish Immunol., 46 (2015), 477-485.
  21. P.E. Phelan, M.E. Pressley, P.E. Witten, M.T. Mellon, S. Blake, C.H. Kim. Characterization of snakehead rhabdovirus infection in zebrafish (Danio rerio). J. Virol., 79 (2005), 1842-1852.
  22. X. Liu, X. Cai, D. Zhang, C. Xu, W. Xiao. Zebrafish foxo3b negatively regulates antiviral response through suppressing the transactivity of irf3 and irf7. J. Immunol., 197 (2016), 4736-4749.
  23. H. Feng, Q.-M. Zhang, Y. Zhang, Z. Li, J. Zhang, Y.-W. Xiong, M. Wu, J.-F. Gui. Zebrafish IRF1, IRF3 and IRF7 differentially regulate IFNF1 and IFNF3 expression through assembly of homo- or heteroprotein complexes. J. Immunol., 197 (2016), 1893-1904.
  24. J. Yuan, Y. Yang, H. Nie, L. Li, W. Gu, L. Lin, M. Zou, X. Liu, M. Wang, Z. Gu. Transcriptome analysis of epithelioma papulosum cyprini cells after SVCV infection. BMC Genom., 15 (2014), p. 935.
  25. J.Y. Hwang, K. Markkandan, M.G. Kwon, J.S. Seo, S. Yoo, S.D. Hwang, M.H. Son, J. Park. Transcriptome analysis of olive flounder (Paralichtys olivaceus) head kidney infected with moderate and high virulent strains of infectious viral hemorrhagic septicaemia virus (VHSV). Fish Shellfish Immunol., 76 (2018), 293-304.
  26. X. Wei, X. Li, X. Zheng, P. Jia, J. Wang, X. Yang, L. Yu, X. Shi, G. Tong, H. Liu. Toll-like receptors and interferon associated immune factors responses to spring viraemia of carp virus infection in common carp (Cyprinus carpio). Fish Shellfish Immunol., 55 (2016), 568-576.
  27. S. Li, Y.-B. Zhang, J.-F. Gui, Q.-Y. Zhang. Identification of DreI as an antiviral factor regulated by RLR signaling pathway. PLoS One, 7 (2012), 10.1371/journal.pone.0032427.
  28. D. Valenzuela-Miranda, S. Boltaña, M.E. Cabrejos, J.M. Yáñez, C. Gallardo-Escárate. High-throughput transcriptome analysis of ISAV-infected Atlantic salmon Salmo salar unravels divergent immune responses associated to head-kidney, liver and gills tissues. Fish Shellfish Immunol., 45 (2015), 367-377.
  29. L. Lu, X. Wang, S. Wu, X. Song, Z. Zou, X. Xie, J. Xiao, S. Chen, H. Feng. Black carp STING functions importantly in innate immune defense against RNA virus. Fish Shellfish Immunol., 70 (2017), 13-24.
  30. M. Varela, P. Diaz-Rosales, P. Pereiro, G. Forn-Cuní, M.M. Costa, S. Dios, A. Romero, A. Figueras, B. Novoa. Interferon-induced genes of the expanded IFIT family show conserved antiviral activities in non-mammalian species. PLoS One, 9 (2014), Article e100015.
  31. D. Pietretti, G.F. Wiegertjes. Ligand specificities of Toll-like receptors in fish: indications from infection studies. Dev. Comp. Immunol., 43 (2014), 205-222.
  32. J. Zou, C.J. Secombes. The function of fish cytokines. Biology, 5 (2016), 10.3390/biology5020023.
  33. C. Carballo, D. Castro, J.J. Borrego, M. Manchado. Gene expression profiles associated with lymphocystis disease virus (LCDV) in experimentally infected Senegalese sole (Solea senegalensis). Fish Shellfish Immunol., 66 (2017), 129-139.
  34. T.W. Du Clos. Pentraxins: structure, function and role in inflammation. ISRN Inflamm. (2013), 10.1155/2013/379040.
  35. M. Bello-Perez, A. Falco, R. Medina, J.A. Encinar, B. Novoa, L. Perez, A. Estepa, J. Coll. Structure and functionalities of the human c-reactive protein compared to the zebrafish multigene family of c-reactive-like proteins. Dev. Comp. Immunol., 69 (2017), 33-40.
  36. M. Bello-Perez, A. Falco, R. Medina-Gali, P. Pereiro, J.A. Encinar, B. Novoa, L. Perez, J. Coll. Neutralization of viral infectivity by zebrafish c-reactive protein isoforms. Mol. Immunol., 91 (2017), 145-155.
  37. B.E. Russ. Distinct epigenetic signatures delineate transcriptional programs during virus-specific CD8+ T cell differentiation. Immunity, 41 (2014), 853-865.
  38. M.G. Netea, L.A.B. Joosten, E. Latz, K.H.G. Mills, G. Natoli, H.G. Stunnenberg, L.A.J. O´Neill, R.J. Xavier. Trained immunity: a program of innate immune memory in health and disease. Science, 352 (2016), p. aaf1098.
  39. J. Petit, G.F. Wiegertjes. Long-lived effects of administering ß-glucans: indications for trained immunity in fish. Dev. Comp. Immunol., 64 (2016), 91-102.
  40. R. Medina-Gali, M. Ortega-Villaizan, L. Mercado, B. Novoa, J. Coll, L. Perez. Beta-glucan enhances the response to SVCV infection in zebrafish. Dev. Comp. Immunol., 84 (2018), 307-314