shaker.umh.es menu
CSS Drop Down Menu by PureCSSMenu.com


Publications → Papers → References

Antimicrobial Capacity of Plant Polyphenols against Gram-positive Bacteria: a Comprehensive Review. Álvarez-Martínez, F.J., Barrajón-Catalán, E., Encinar, J.A., Rodríguez-Díaz, J.C., Micol, V. 2018. Current Medicinal Chemistry.


  1. Editorials, N., The antibiotic alarm. Nature, 2013, 495, (141), 1.
  2. Torjesen, I., Antimicrobial resistance presents an "apocalyptic" threat similar to that of climate change, CMO warns. BMJ, 2013, 346, f1597.
  3. Shallcross, L.J.; Davies, S.C., The World Health Assembly resolution on antimicrobial resistance. J Antimicrob Chemother, 2014, 69, (11), 2883-2885.
  4. Holmes, A.H.; Moore, L.S.P.; Sundsfjord, A.; Steinbakk, M.; Regmi, S.; Karkey, A.; Guerin, P.J.; Piddock, L.J.V., Understanding the mechanisms and drivers of antimicrobial resistance. The Lancet, 2016, 387, (10014), 176-187.
  5. Mandal, S.M.; Roy, A.; Ghosh, A.K.; Hazra, T.K.; Basak, A.; Franco, O.L., Challenges and future prospects of antibiotic therapy: from peptides to phages utilization. Front Pharmacol, 2014, 5, 105.
  6. Lee, C.R.; Cho, I.H.; Jeong, B.C.; Lee, S.H., Strategies to minimize antibiotic resistance. Int J Environ Res Public Health, 2013, 10, (9), 4274-4305.
  7. Bartlett, J.G.; Gilbert, D.N.; Spellberg, B., Seven ways to preserve the miracle of antibiotics. Clin Infect Dis, 2013, 56, (10), 1445-1450.
  8. McCarthy, M., Number of agents being developed to combat drug resistant bacteria is "alarmingly low," warns report. BMJ, 2013, 346, f2548.
  9. Antonanzas, F.; Lozano, C.; Torres, C., Economic features of antibiotic resistance: the case of methicillin-resistant Staphylococcus aureus. Pharmacoeconomics, 2015, 33, (4), 285-325.
  10. Gudiol, F.; Aguado, J.M.; Almirante, B.; Bouza, E.; Cercenado, E.; Dominguez, M.A.; Gasch, O.; Lora-Tamayo, J.; Miro, J.M.; Palomar, M.; Pascual, A.; Pericas, J.M.; Pujol, M.; Rodriguez-Bano, J.; Shaw, E.; Soriano, A.; Valles, J., Diagnosis and treatment of bacteremia and endocarditis due to Staphylococcus aureus. A clinical guideline from the Spanish Society of Clinical Microbiology and Infectious Diseases (SEIMC). Enferm Infecc Microbiol Clin, 2015, 33, (9), 625 e621-625 e623.
  11. Lawes, T.; Lopez-Lozano, J.-M.; Nebot, C.A.; Macartney, G.; Subbarao-Sharma, R.; Dare, C.R.J.; Wares, K.D.; Gould, I.M., Effects of national antibiotic stewardship and infection control strategies on hospital-associated and community-associated meticillin-resistant Staphylococcus aureus infections across a region of Scotland: a non-linear time-series study. The Lancet Infectious Diseases, 2015, 15, (12), 1438-1449.
  12. Bakthavatchalam, Y.D.; Nabarro, L.E.B.; Ralph, R.; Veeraraghavan, B., Diagnosis and management of Panton-Valentine leukocidin toxin associated Staphylococcus aureus infection: an update. Virulence, 2017, 0.
  13. Lindsay, J.A., Hospital-associated MRSA and antibiotic resistance-what have we learned from genomics? Int J Med Microbiol, 2013, 303, (6-7), 318-323.
  14. Palavecino, E., Clinical, Epidemiologic, and Laboratory Aspects of Methicillin-Resistant Staphylococcus aureus Infections. Methods in Molecular Biology, 2014, 1085, 1-24.
  15. Hryniewicz, M.M.; Garbacz, K., Borderline oxacillin-resistant Staphylococcus aureus (BORSA) - a more common problem than expected? J Med Microbiol, 2017, 66, (10), 1367-1373.
  16. Chatterjee, S.S.; Chen, L.G., A. ; M., d.C.T.; Nair, V.; Datta, S.K.; Kreiswirth, B.N.; Chambers, H.F., PBP4 Mediates ß-Lactam Resistance by Altered Function. Antimicrob Agents Chemother, 2017, 61, (11).
  17. Diaz, R.; Afreixo, V.; Ramalheira, E.; Rodrigues, C.; Gago, B., Evaluation of vancomycin MIC creep in methicillin-resistant Staphylococcus aureus infections-a systematic review and meta-analysis. Clin Microbiol Infect, 2017.
  18. Stryjewski, M.E.; Corey, G.R., Methicillin-resistant Staphylococcus aureus: an evolving pathogen. Clin Infect Dis, 2014, 58 Suppl 1, S10-19.
  19. Musumeci, R.; Calaresu, E.; Gerosa, J.; Oggioni, D.; Bramati, S.; Morelli, P.; Mura, I.; Piana, A.; Are, B.M.; Cocuzza, C.E., Resistance to linezolid in Staphylococcus spp. clinical isolates associated with ribosomal binding site modifications: novel mutation in domain V of 23S rRNA. New Microbiol., 2016, 39, (4), 269-273.
  20. Rodvold, K.A.; McConeghy, K.W., Methicillin-resistant Staphylococcus aureus therapy: past, present, and future. Clin Infect Dis, 2014, 58 Suppl 1, S20-27.
  21. Gómez , N.; Siller, M.; Muñoz, J.L., Mechanisms of resistance to daptomycin in Staphylococcus aureus. Rev Esp Quimioter, 2017, 30, (6), 391-396.
  22. Sader, H.S.; Farrell, D.J.; Flamm, R.K.; Jones, R.N., Activity of ceftaroline and comparator agents tested against Staphylococcus aureus from patients with bloodstream infections in US medical centres (2009-13). J Antimicrob Chemother, 2015, 70, (7), 2053-2056.
  23. Roberts, K.D.; Sulaiman, R.M.; Rybak, M.J., Dalbavancin and Oritavancin: An Innovative Approach to the Treatment of Gram-Positive Infections. Pharmacotherapy, 2015, 35, (10), 935-948.
  24. Agarwal, R.; Bartsch, S.M.; Kelly, B.J.; Prewitt, M.; Liu, Y.; Chen, Y.; Umscheid, C.A., Newer glycopeptide antibiotics for treatment of complicated skin and soft tissue infections: systematic review, network meta-analysis and cost analysis. Clin Microbiol Infect, 2017.
  25. Wink, M., Modes of Action of Herbal Medicines and Plant Secondary Metabolites. Medicines (Basel), 2015, 2, (3), 251-286.
  26. Wink, M.; Ashour, M.L.; El-Readi, M.Z., Secondary Metabolites from Plants Inhibiting ABC Transporters and Reversing Resistance of Cancer Cells and Microbes to Cytotoxic and Antimicrobial Agents. Front Microbiol, 2012, 3, 130.
  27. Lamming, D.W.; Wood, J.G.; Sinclair, D.A., Small molecules that regulate lifespan: evidence for xenohormesis. Mol Microbiol, 2004, 53, (4), 1003-1009.
  28. Dixon, R., Natural products and plant disease resistance. Nature, 2001, 411, 843-847.
  29. Stevenson, D.E.; Hurst, R.D., Polyphenolic phytochemicals--just antioxidants or much more? Cell Mol Life Sci, 2007, 64, (22), 2900-2916.
  30. Barrajon-Catalan, E.; Herranz-Lopez, M.; Joven, J.; Segura-Carretero, A.; Alonso-Villaverde, C.; Menendez, J.A.; Micol, V., Molecular promiscuity of plant polyphenols in the management of age-related diseases: far beyond their antioxidant properties. Adv Exp Med Biol, 2014, 824, 141-159.
  31. Herranz-Lopez, M.; Olivares-Vicente, M.; Encinar, J.A.; Barrajon-Catalan, E.; Segura-Carretero, A.; Joven, J.; Micol, V., Multi-Targeted Molecular Effects of Hibiscus sabdariffa Polyphenols: An Opportunity for a Global Approach to Obesity. Nutrients, 2017, 9, (8).
  32. Howitz, K.S., D., Xenohormesis sensing the chemical cues of other species. Cell, 2008, 133, (3), 387-390.
  33. Fernandez-Arroyo, S.; Herranz-Lopez, M.; Beltran-Debon, R.; Borras-Linares, I.; Barrajon-Catalan, E.; Joven, J.; Fernandez-Gutierrez, A.; Segura-Carretero, A.; Micol, V., Bioavailability study of a polyphenol-enriched extract from Hibiscus sabdariffa in rats and associated antioxidant status. Molecular nutrition & food research, 2012, 56, 1590-1595.
  34. Olivares-Vicente, M.; Barrajon-Catalan, E.; Herranz-Lopez, M.; Segura-Carretero, A.; Joven, J.; Encinar, J.A.; Micol, V., Plant-derived polyphenols in human health: biological activity, metabolites and putative molecular targets. Current drug metabolism, 2018.
  35. Fu, J.; Wu, S.; Wang, M.; Tian, Y.; Zhang, Z.; Song, R., Intestinal Metabolism of Polygonum Cuspidatum in vitro and in vivo. Biomed Chromatogr, 2018.
  36. Marin, L.; Miguelez, E.M.; Villar, C.J.; Lombo, F., Bioavailability of dietary polyphenols and gut microbiota metabolism: antimicrobial properties. Biomed Res Int, 2015, 2015, 905215.
  37. de Camargo, A.C.; Regitano-d'Arce, M.A.B.; Rasera, G.B.; Canniatti-Brazaca, S.G.; do Prado-Silva, L.; Alvarenga, V.O.; Sant'Ana, A.S.; Shahidi, F., Phenolic acids and flavonoids of peanut by-products: Antioxidant capacity and antimicrobial effects. Food Chem, 2017, 237, 538-544.
  38. Zengin, G.; Uysal, A.; Aktumsek, A.; Mocan, A.; Mollica, A.; Locatelli, M.; Custodio, L.; Neng, N.R.; Nogueira, J.M.F.; Aumeeruddy-Elalfi, Z.; Mahomoodally, M.F., Euphorbia denticulata Lam.: A promising source of phyto-pharmaceuticals for the development of novel functional formulations. Biomed Pharmacother, 2017, 87, 27-36.
  39. Barber, M.D., B., Antimicrobial intermediates of the general phenylpropanoid and lignin specific pathways. Phytochemistry, 2000, 54, 53-56.
  40. Bag, A.; Chattopadhyay, R.R., Synergistic antibacterial and antibiofilm efficacy of nisin in combination with p-coumaric acid against food-borne bacteria Bacillus cereus and Salmonella typhimurium. Lett Appl Microbiol, 2017, 65, (5), 366-372.
  41. Garcia-Munoz, C.; Vaillant, F., Metabolic fate of ellagitannins: implications for health, and research perspectives for innovative functional foods. Crit Rev Food Sci Nutr, 2014, 54, (12), 1584-1598.
  42. Clifford, M.; Scalbert, A., Ellagitannins – nature, occurrence and dietary burden. J. Food Sci. Agric, 2000, 80, (7).
  43. Shimozu, Y.; Kuroda, T.; Tsuchiya, T.; Hatano, T., Structures and Antibacterial Properties of Isorugosins H-J, Oligomeric Ellagitannins from Liquidambar formosana with Characteristic Bridging Groups between Sugar Moieties. J Nat Prod. 2017, 80(10), 2723-2733.
  44. Okuda, T.H., T., Ellagitannins as active constituents of medicinal plants. Planta Medica, 1989, 55, 117-122.
  45. González, M.a.J.s.; Torres, J.L.s.; Medina, I., Impact of Thermal Processing on the Activity of Gallotannins and Condensed Tannins from Hamamelis virginiana Used as Functional Ingredients in Seafood. Journal of Agricultural and Food Chemistry, 2010, 58, (7), 4274-4283.
  46. Gan, R.Y.; Kong, K.W.; Li, H.B.; Wu, K.; Ge, Y.Y.; Chan, C.L.; Shi, X.M.; Corke, H., Separation, Identification, and Bioactivities of the Main Gallotannins of Red Sword Bean (Canavalia gladiata) Coats. Front Chem, 2018, 6, 39.
  47. Barrajon-Catalan, E.; Fernandez-Arroyo, S.; Saura, D.; Guillen, E.; Fernandez-Gutierrez, A.; Segura-Carretero, A.; Micol, V., Cistaceae aqueous extracts containing ellagitannins show antioxidant and antimicrobial capacity, and cytotoxic activity against human cancer cells. Food Chem Toxicol, 2010, 48, (8-9), 2273-2282.
  48. Tomas-Menor, L.; Morales-Soto, A.; Barrajon-Catalan, E.; Roldan-Segura, C.; Segura-Carretero, A.; Micol, V., Correlation between the antibacterial activity and the composition of extracts derived from various Spanish Cistus species. Food Chem Toxicol, 2013, 55, 313-322.
  49. Shimozu, Y.; Kimura, Y.; Esumi, A.; Aoyama, H.; Kuroda, T.; Sakagami, H.; Hatano, T., Ellagitannins of Davidia involucrata. I. Structure of Davicratinic Acid A and Effects of Davidia Tannins on Drug-Resistant Bacteria and Human Oral Squamous Cell Carcinomas. Molecules, 2017, 22, (3).
  50. Tomas-Menor, L.; Barrajon-Catalan, E.; Segura-Carretero, A.; Marti, N.; Saura, D.; Menendez, J.A.; Joven, J.; Micol, V., The promiscuous and synergic molecular interaction of polyphenols in bactericidal activity: an opportunity to improve the performance of antibiotics? Phytother Res, 2015, 29, (3), 466-473.
  51. Lee, C.J.; Chen, L.G.; Liang, W.L.; Wang, C.C., Multiple Activities of Punica granatum Linne against Acne Vulgaris. Int J Mol Sci, 2017, 18, (1).
  52. Engels, C.; Schieber, A.; Ganzle, M.G., Inhibitory spectra and modes of antimicrobial action of gallotannins from mango kernels (Mangifera indica L.). Appl Environ Microbiol, 2011, 77, (7), 2215-2223.
  53. Henis, Y.V., R., Effect of water extracts of carob pods, tannic acid, and their derivatives on the morphology and growth of microorganisms. Applied Microbiology, 1964, 12, (3), 204-209.
  54. Kozlowska, A.; Szostak-Wegierek, D., Flavonoids - food sources and health benefits. Rocz Panstw Zakl Hig, 2014, 65, (2), 79-85.
  55. Fazly Bazzaz, B.S.; Sarabandi, S.; Khameneh, B.; Hosseinzadeh, H., Effect of Catechins, Green tea Extract and Methylxanthines in Combination with Gentamicin Against Staphylococcus aureus and Pseudomonas aeruginosa: - Combination therapy against resistant bacteria. J Pharmacopuncture, 2016, 19, (4), 312-318.
  56. Hatano, T.; Tsugawa, M.; Kusuda, M.; Taniguchi, S.; Yoshida, T.; Shiota, S.; Tsuchiya, T., Enhancement of antibacterial effects of epigallocatechin gallate, using ascorbic acid. Phytochemistry, 2008, 69, (18), 3111-3116.
  57. Sharma, A.; Gupta, S.; Sarethy, I.P.; Dang, S.; Gabrani, R., Green tea extract: possible mechanism and antibacterial activity on skin pathogens. Food Chem, 2012, 135, (2), 672-675.
  58. Hatano, T.; Kusuda, M.; Inada, K.; Ogawa, T.O.; Shiota, S.; Tsuchiya, T.; Yoshida, T., Effects of tannins and related polyphenols on methicillin-resistant Staphylococcus aureus. Phytochemistry, 2005, 66, (17), 2047-2055.
  59. Khoo, H.E.; Azlan, A.; Tang, S.T.; Lim, S.M., Anthocyanidins and anthocyanins: colored pigments as food, pharmaceutical ingredients, and the potential health benefits. Food Nutr Res, 2017, 61, (1), 1361779.
  60. Lacombe, A.; Wu, V.C.; Tyler, S.; Edwards, K., Antimicrobial action of the American cranberry constituents; phenolics, anthocyanins, and organic acids, against Escherichia coli O157:H7. Int J Food Microbiol, 2010, 139, (1-2), 102-107.
  61. Naz, S.; Siddiqi, R.; Ahmad, S.; Rasool, S.A.; Sayeed, S.A., Antibacterial activity directed isolation of compounds from Punica granatum. J Food Sci, 2007, 72, (9), 341-345.
  62. Puupponen-Pimia, R.O.-C., K., The action of berry phenolics against human intestinal pathogens. BioFactors, 2005, 23, 243-251.
  63. Barreca, D.; Gattuso, G.; Bellocco, E.; Calderaro, A.; Trombetta, D.; Smeriglio, A.; Lagana, G.; Daglia, M.; Meneghini, S.; Nabavi, S.M., Flavanones: Citrus phytochemical with health-promoting properties. Biofactors, 2017, 43, (4), 495-506.
  64. Siriwong, S.; Teethaisong, Y.; Thumanu, K.; Dunkhunthod, B.; Eumkeb, G., The synergy and mode of action of quercetin plus amoxicillin against amoxicillin-resistant Staphylococcus epidermidis. BMC Pharmacol Toxicol, 2016, 17, (1), 39.
  65. Mokhtar, M.; Ginestra, G.; Youcefi, F.; Filocamo, A.; Bisignano, C.; Riazi, A., Antimicrobial Activity of Selected Polyphenols and Capsaicinoids Identified in Pepper (Capsicum annuum L.) and Their Possible Mode of Interaction. Curr Microbiol, 2017.
  66. Su, Y.; Ma, L.; Wen, Y.; Wang, H.; Zhang, S., Studies of the in vitro antibacterial activities of several polyphenols against clinical isolates of methicillin-resistant Staphylococcus aureus. Molecules, 2014, 19, (8), 12630-12639.
  67. Madikizela, B.; Aderogba, M.A.; Van Staden, J., Isolation and characterization of antimicrobial constituents of Searsia chirindensis L. (Anacardiaceae) leaf extracts. J Ethnopharmacol, 2013, 150, (2), 609-613.
  68. Zhang, Y.; Wang, J.F.; Dong, J.; Wei, J.Y.; Wang, Y.N.; Dai, X.H.; Wang, X.; Luo, M.J.; Tan, W.; Deng, X.M.; Niu, X.D., Inhibition of alpha-toxin production by subinhibitory concentrations of naringenin controls Staphylococcus aureus pneumonia. Fitoterapia, 2013, 86, 92-99.
  69. Celiz, G.; Daz, M.; Audisio, M.C., Antibacterial activity of naringin derivatives against pathogenic strains. J Appl Microbiol, 2011, 111, (3), 731-738.
  70. Sato, Y.H., T., Phytochemical flavones isolated from Scutellaria barbata and antibacterial activity against methicillin-resistant Staphylococcus aureus. Journal of Ethnopharmacology, 2000, 72, 483-488.
  71. Ping-Chin, C.Y.-C., C., In vitro synergy of baicalein and gentamicin against vancomycin-resistant Enterococcus. Journal of Microbiology, Immunology and Infection, 2007, 40, 56-61.
  72. Fujita, M.T., T., Remarkable synergies between baicalein and tetracycline, and baicalein and beta-lactams against methicillin-resistant Staphylococcus aureus. Microbiol. Immunol., 2005, 49, (4), 391-396.
  73. Wang, T.; Liu, Y.; Li, X.; Xu, Q.; Feng, Y.; Yang, S., Isoflavones from green vegetable soya beans and their antimicrobial and antioxidant activities. J Sci Food Agric, 2017.
  74. Su, S.; Wink, M., Natural lignans from Arctium lappa as antiaging agents in Caenorhabditis elegans. Phytochemistry, 2015, 117, 340-350.
  75. Peterson, J.; Dwyer, J.; Adlercreutz, H.; Scalbert, A.; Jacques, P.; McCullough, M.L., Dietary lignans: physiology and potential for cardiovascular disease risk reduction. Nutr Rev, 2010, 68, (10), 571-603.
  76. Laporta, O.; Funes, L.; Garzon, M.T.; Villalain, J.; Micol, V., Role of membranes on the antibacterial and anti-inflammatory activities of the bioactive compounds from Hypoxis rooperi corm extract. Arch Biochem Biophys, 2007, 467, (1), 119-131.
  77. Zuo, G.Y.; Zhang, X.J.; Han, J.; Li, Y.Q.; Wang, G.C., In vitro synergism of magnolol and honokiol in combination with antibacterial agents against clinical isolates of methicillin-resistant Staphylococcus aureus (MRSA). BMC Complement Altern Med, 2015, 15, 425.
  78. Zhang, J.Z., C., New lignans and their biological activities. Chemistry & Biodiversity, 2014, 11, 1-54.
  79. Li, C.; Liu, H.; Zhao, L.; Zhang, W.; Qiu, S.; Yang, X.; Tan, H., Antibacterial neolignans from the leaves of Melaleuca bracteata. Fitoterapia, 2017, 120, 171-176.
  80. Maruyama, M.; Yamauchi, S.; Akiyama, K.; Sugahara, T.; Kishida, T.; Koba, Y., Antibacterial activity of a virgatusin-related compound. Biosci Biotechnol Biochem, 2007, 71, (3), 677-680.
  81. Bostanghadiri, N.; Pormohammad, A.; Chirani, A.S.; Pouriran, R.; Erfanimanesh, S.; Hashemi, A., Comprehensive review on the antimicrobial potency of the plant polyphenol Resveratrol. Biomed Pharmacother, 2017, 95, 1588-1595.
  82. Martin, D.A.; Bolling, B.W., A review of the efficacy of dietary polyphenols in experimental models of inflammatory bowel diseases. Food Funct, 2015, 6, (6), 1773-1786.
  83. Kumar, S.N.; Siji, J.V.; Rajasekharan, K.N.; Nambisan, B.; Mohandas, C., Bioactive stilbenes from a Bacillus sp. N strain associated with a novel rhabditid entomopathogenic nematode. Lett Appl Microbiol, 2012, 54, (5), 410-417.
  84. Lee, K.; Lee, J.H.; Ryu, S.Y.; Cho, M.H.; Lee, J., Stilbenes reduce Staphylococcus aureus hemolysis, biofilm formation, and virulence. Foodborne Pathog Dis, 2014, 11, (9), 710-717.
  85. Sun, D.; Hurdle, J.G.; Lee, R.; Lee, R.; Cushman, M.; Pezzuto, J.M., Evaluation of flavonoid and resveratrol chemical libraries reveals abyssinone II as a promising antibacterial lead. ChemMedChem, 2012, 7, (9), 1541-1545.
  86. Lee, W.X.; Basri, D.F.; Ghazali, A.R., Bactericidal Effect of Pterostilbene Alone and in Combination with Gentamicin against Human Pathogenic Bacteria. Molecules, 2017, 22, (3).
  87. Araya-Cloutier, C.; den Besten, H.M.; Aisyah, S.; Gruppen, H.; Vincken, J.P., The position of prenylation of isoflavonoids and stilbenoids from legumes (Fabaceae) modulates the antimicrobial activity against Gram positive pathogens. Food Chem, 2017, 226, 193-201.
  88. Reygaert, W.C., The antimicrobial possibilities of green tea. Front Microbiol, 2014, 5, 434.
  89. Taylor, P.S., P, Antimicrobial properties of green tea catechins. Food Sci Technol Bull., 2005, 2, 71-81.
  90. Tyc, O.; Tomas-Menor, L.; Garbeva, P.; Barrajon-Catalan, E.; Micol, V., Validation of the AlamarBlue(R) Assay as a Fast Screening Method to Determine the Antimicrobial Activity of Botanical Extracts. PLoS One, 2016, 11, (12), e0169090.
  91. Sahli, R.; Riviere, C.; Neut, C.; Bero, J.; Sahuc, M.E.; Smaoui, A.; Beaufay, C.; Roumy, V.; Hennebelle, T.; Rouille, Y.; Quetin-Leclercq, J.; Seron, K.; Ksouri, R.; Sahpaz, S., An ecological approach to discover new bioactive extracts and products: the case of extremophile plants. J Pharm Pharmacol, 2017.
  92. Dickson, R.A.; Houghton, P.J.; Hylands, P.J.; Gibbons, S., Antimicrobial, resistance-modifying effects, antioxidant and free radical scavenging activities of Mezoneuron benthamianum Baill., Securinega virosa Roxb. & Wlld. and Microglossa pyrifolia Lam. Phytother Res, 2006, 20, (1), 41-45.
  93. Munyendo, W.L.L.; Orwa, J.A.; Rukunga, G.M.; Bii, C.C., Bacteriostatic and Bactericidal Activities of Aspilia mossambicensis, Ocimum gratissimum and Toddalia asiatica Extracts on Selected Pathogenic Bacteria. Research Journal of Medicinal Plant, 2011, 5, (6), 717-727.
  94. Abdul Qadir, M.; Shahzadi, S.K.; Bashir, A.; Munir, A.; Shahzad, S., Evaluation of Phenolic Compounds and Antioxidant and Antimicrobial Activities of Some Common Herbs. Int J Anal Chem, 2017, 2017, 3475738.
  95. Howell, A.B.; D'Souza, D.H., The Pomegranate: Effects on Bacteria and Viruses That Influence Human Health. Evidence-Based Complementary and Alternative Medicine, 2013, 2013, 1-11.
  96. Braga, L.C.; Leite, A.A.; Xavier, K.G.; Takahashi, J.A.; Bemquerer, M.P.; Chartone-Souza, E.; Nascimento, A.M., Synergic interaction between pomegranate extract and antibiotics against Staphylococcus aureus. Can J Microbiol, 2005, 51, (7), 541-547.
  97. Voravuthikunchai, S.P.; Kitpipit, L., Activity of medicinal plant extracts against hospital isolates of methicillin-resistant Staphylococcus aureus. Clin Microbiol Infect, 2005, 11, (6), 510-512.
  98. Su, X.; Howell, A.B.; D'Souza, D.H., Antibacterial effects of plant-derived extracts on methicillin-resistant Staphylococcus aureus. Foodborne Pathog Dis, 2012, 9, (6), 573-578.
  99. EUCAST, Terminology relating to methods for the determination of susceptibility of bacteria to antimicrobial agents. Clinical Microbiology and Infection, 2000, 6, (9), 503-508.
  100. Solarte, A.L.; Astorga, R.J.; Aguiar, F.; Galan-Relano, A.; Maldonado, A.; Huerta, B., Combination of Antimicrobials and Essential Oils as an Alternative for the Control of Salmonella enterica Multiresistant Strains Related to Foodborne Disease. Foodborne Pathog Dis, 2017, 14, (10), 558-563.
  101. Gomez Castellanos, J.R.; Prieto, J.M.; Heinrich, M., Red Lapacho (Tabebuia impetiginosa)--a global ethnopharmacological commodity? J Ethnopharmacol, 2009, 121, (1), 1-13.
  102. Wagner, H.; Ulrich-Merzenich, G., Synergy research: approaching a new generation of phytopharmaceuticals. Phytomedicine, 2009, 16, (2-3), 97-110.
  103. Arima, H.; Ashida, H.; Danno, G., Rutin-enhanced antibacterial activities of flavonoids against Bacillus cereus and Salmonella enteritidis. Biosci Biotechnol Biochem, 2002, 66, (5), 1009-1014.
  104. Ganeshpurkar, A.; Saluja, A.K., The Pharmacological Potential of Rutin. Saudi Pharmaceutical Journal, 2017, 25, (2), 149-164.
  105. Tegos, G.; Stermitz, F.R.; Lomovskaya, O.; Lewis, K., Multidrug Pump Inhibitors Uncover Remarkable Activity of Plant Antimicrobials. Antimicrobial Agents and Chemotherapy, 2002, 46, (10), 3133-3141.
  106. Kwon, Y.I.; Apostolidis, E.; Labbe, R.G.; Shetty, K., Inhibition of Staphylococcus aureus by Phenolic Phytochemicals of Selected Clonal Herbs Species of Lamiaceae Family and Likely Mode of Action through Proline Oxidation. Food Biotechnology, 2007, 21, (1), 71-89.
  107. Betoni, J.F., A., Synergism between plant extract and antimicrobial drugs used on Staphylococcus aureus diseases. Mem Inst Oswaldo Cruz, 2006, 101, (4), 387-390.
  108. Sudano Roccaro, A.; Blanco, A.R.; Giuliano, F.; Rusciano, D.; Enea, V., Epigallocatechin-gallate enhances the activity of tetracycline in staphylococci by inhibiting its efflux from bacterial cells. Antimicrob Agents Chemother, 2004, 48, (6), 1968-1973.
  109. Stapleton, P.D.; Shah, S.; Hara, Y.; Taylor, P.W., Potentiation of catechin gallate-mediated sensitization of Staphylococcus aureus to oxacillin by nongalloylated catechins. Antimicrob Agents Chemother, 2006, 50, (2), 752-755.
  110. Stapleton, P.D.; Shah, S.; Anderson, J.C.; Hara, Y.; Hamilton-Miller, J.M.; Taylor, P.W., Modulation of beta-lactam resistance in Staphylococcus aureus by catechins and gallates. Int J Antimicrob Agents, 2004, 23, (5), 462-467.
  111. Kim, S.Y.; Kim, J.; Jeong, S.I.; Jahng, K.Y.; Yu, K.Y., Antimicrobial Effects and Resistant Regulation of Magnolol and Honokiol on Methicillin-Resistant Staphylococcus aureus. Biomed Res Int, 2015, 2015, 283630.
  112. Shiota, S.T., T., Mechanisms of Action of Corilagin and Tellimagrandin I That Remarkably Potentiate the Activity of Beta-lactams against Methicillin-resistant Staphylococcus aureus. Microbiol. Immunol., 2004, 48, (1), 67-73.
  113. Morel, C.L., K., Isoflavones as potentiators of antibacterial activity. J. Agric. Food Chem., 2003, 51, 5677-5679.
  114. Santiago, C.; Pang, E.L.; Lim, K.H.; Loh, H.S.; Ting, K.N., Inhibition of penicillin-binding protein 2a (PBP2a) in methicillin resistant Staphylococcus aureus (MRSA) by combination of ampicillin and a bioactive fraction from Duabanga grandiflora. BMC Complement Altern Med, 2015, 15, 178.
  115. Hu, D.L.; Nakane, A., Mechanisms of staphylococcal enterotoxin-induced emesis. Eur J Pharmacol, 2014, 722, 95-107.
  116. Martillanes, S.; Rocha-Pimienta, J.; Cabrera-Bañegil, M.; Martín-Vertedor, D.; Delgado-Adámez, J. In Phenolic Compounds - Biological Activity. Soto-Hernandez, M.; Palma-Tenango, M.; Garcia-Mateos, M.d.R., Eds.; InTech: Rijeka, 2017, p Ch. 03.
  117. Zhao, Y.; Zhu, A.; Tang, J.; Tang, C.; Chen, J., Comparative Effects of Food Preservatives on the Production of Staphylococcal Enterotoxin I from Staphylococcus aureus Isolate. Journal of Food Quality, 2017, 2017, 5.
  118. Shimamura, Y.; Hirai, C.; Sugiyama, Y.; Shibata, M.; Ozaki, J.; Murata, M.; Ohashi, N.; Masuda, S., Inhibitory effects of food additives derived from polyphenols on staphylococcal enterotoxin A production and biofilm formation by Staphylococcus aureus. Biosci Biotechnol Biochem, 2017, 81, (12), 2346-2352.
  119. Maqsood, S.; Benjakul, S.; Shahidi, F., Emerging role of phenolic compounds as natural food additives in fish and fish products. Crit Rev Food Sci Nutr, 2013, 53, (2), 162-179.
  120. Fisher, S.L., Glutamate racemase as a target for drug discovery. Microb Biotechnol, 2008, 1, (5), 345-360.
  121. Weidenmaier, C.; Peschel, A., Teichoic acids and related cell-wall glycopolymers in Gram-positive physiology and host interactions. Nat Rev Microbiol, 2008, 6, (4), 276-287.
  122. Beeby, M.; Gumbart, J.C.; Roux, B.; Jensen, G.J., Architecture and assembly of the Gram-positive cell wall. Mol Microbiol, 2013, 88, (4), 664-672.
  123. Yuan, B.W., M., Polysaccharide export outer membrane proteins in Gram-negative bacteria. Future Microbiol., 2013, 8, (4), 525-535.
  124. Typas, A.; Banzhaf, M.; Gross, C.A.; Vollmer, W., From the regulation of peptidoglycan synthesis to bacterial growth and morphology. Nat Rev Microbiol, 2011, 10, (2), 123-136.
  125. Pojer, E.; Mattivi, F.; Johnson, D.; Stockley, C.S., The Case for Anthocyanin Consumption to Promote Human Health: A Review. Comprehensive Reviews in Food Science and Food Safety, 2013, 12, (5), 483-508.
  126. Din, W.M.; Jin, K.T.; Ramli, R.; Khaithir, T.M.; Wiart, C., Antibacterial effects of ellagitannins from Acalypha wilkesiana var. macafeana hort.: surface morphology analysis with environmental scanning electron microscopy and synergy with antibiotics. Phytother Res, 2013, 27, (9), 1313-1320.
  127. Lambert, R.N., G., A study of the minimum inhibitory concentration and mode of action of oregano essential oil, thymol and carvacrol. Journal of Applied Microbiology, 2001, 91, 453-462.
  128. Wang, L.H.; Wang, M.S.; Zeng, X.A.; Xu, X.M.; Brennan, C.S., Membrane and genomic DNA dual-targeting of citrus flavonoid naringenin against Staphylococcus aureus. Integr Biol (Camb), 2017, 9, (10), 820-829.
  129. Caturla, N., The relationship between the antioxidant and the antibacterial properties of galloylated catechins and the structure of phospholipid model membranes. Free Radical Biology and Medicine, 2003, 34, (6), 648-662.
  130. Nakayama, M.; Shimatani, K.; Ozawa, T.; Shigemune, N.; Tomiyama, D.; Yui, K.; Katsuki, M.; Ikeda, K.; Nonaka, A.; Miyamoto, T., Mechanism for the antibacterial action of epigallocatechin gallate (EGCg) on Bacillus subtilis. Biosci Biotechnol Biochem, 2015, 79, (5), 845-854.
  131. Sirk, T.W.F., M., Molecular dynamics study on the biophysical interactions of seven green tea catechins with lipid bilayers of cell membranes. J. Agric. Food Chem., 2008, 56, 7750-7758.
  132. Bernal, P.; Lemaire, S.; Pinho, M.G.; Mobashery, S.; Hinds, J.; Taylor, P.W., Insertion of epicatechin gallate into the cytoplasmic membrane of methicillin-resistant Staphylococcus aureus disrupts penicillin-binding protein (PBP) 2a-mediated beta-lactam resistance by delocalizing PBP2. J Biol Chem, 2010, 285, (31), 24055-24065.
  133. Mandal, S.M.; Dias, R.O.; Franco, O.L., Phenolic Compounds in Antimicrobial Therapy. J Med Food, 2017, 20, (10), 1031-1038.
  134. Lin, R.D.; Chin, Y.P.; Hou, W.C.; Lee, M.H., The effects of antibiotics combined with natural polyphenols against clinical methicillin-resistant Staphylococcus aureus (MRSA). Planta Med, 2008, 74, (8), 840-846.
  135. Kusuda, M.; Inada, K.; Ogawa, T.O.; Yoshida, T.; Shiota, S.; Tsuchiya, T.; Hatano, T., Polyphenolic constituent structures of Zanthoxylum piperitum fruit and the antibacterial effects of its polymeric procyanidin on methicillin-resistant Staphylococcus aureus. Biosci Biotechnol Biochem, 2006, 70, (6), 1423-1431.
  136. Nozaki, A.; Hori, M.; Kimura, T.; Ito, H.; Hatano, T., Interaction of Polyphenols with Proteins: Binding of (-)-Epigallocatechin Gallate to Serum Albumin, Estimated by Induced Circular Dichroism. Chem Pharm Bull, 2009, 57, (2), 224-228.
  137. Rothwell, J.A.; Perez-Jimenez, J.; Neveu, V.; Medina-Remon, A.; M'Hiri, N.; Garcia-Lobato, P.; Manach, C.; Knox, C.; Eisner, R.; Wishart, D.S.; Scalbert, A., Phenol-Explorer 3.0: a major update of the Phenol-Explorer database to incorporate data on the effects of food processing on polyphenol content. Database (Oxford), 2013, 2013, bat070.
  138. Encinar, J.A.; Fernandez-Ballester, G.; Galiano-Ibarra, V.; Micol, V., In silico approach for the discovery of new PPARgamma modulators among plant-derived polyphenols. Drug Des Devel Ther, 2015, 9, 5877-5895.
  139. Galiano, V.; Garcia-Valtanen, P.; Micol, V.; Encinar, J.A., Looking for inhibitors of the dengue virus NS5 RNA-dependent RNA-polymerase using a molecular docking approach. Drug Des Devel Ther, 2016, 10, 3163-3181.
  140. Trott, O.; Olson, A.J., AutoDock Vina: improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J Comput Chem, 2010, 31, (2), 455-461.
  141. Biasini, M.; Bienert, S.; Waterhouse, A.; Arnold, K.; Studer, G.; Schmidt, T.; Kiefer, F.; Gallo Cassarino, T.; Bertoni, M.; Bordoli, L.; Schwede, T., SWISS-MODEL: modelling protein tertiary and quaternary structure using evolutionary information. Nucleic Acids Res, 2014, 42, (Web Server issue), W252-258.
  142. Cho, Y.S.; Schiller, N.L.; Oh, K.H., Antibacterial effects of green tea polyphenols on clinical isolates of methicillin-resistant Staphylococcus aureus. Curr Microbiol, 2008, 57, (6), 542-546.
  143. Radji, M.; Agustama, R.A.; Elya, B.; Tjampakasari, C.R., Antimicrobial activity of green tea extract against isolates of methicillin-resistant Staphylococcus aureus and multi-drug resistant Pseudomonas aeruginosa. Asian Pac J Trop Biomed, 2013, 3, (8), 663-667; discussion 666.
  144. Ankolekar, C.; Johnson, D.; Pinto Mda, S.; Johnson, K.; Labbe, R.; Shetty, K., Inhibitory potential of tea polyphenolics and influence of extraction time against Helicobacter pylori and lack of inhibition of beneficial lactic acid bacteria. J Med Food, 2011, 14, (11), 1321-1329.
  145. Lee, P.; Tan, K.S., Effects of Epigallocatechin gallate against Enterococcus faecalis biofilm and virulence. Arch Oral Biol, 2015, 60, (3), 393-399.
  146. Ashiuchi, M.; Kuwana, E.; Yamamoto, T.; Komatsu, K.; Soda, K.; Misono, H., Glutamate racemase is an endogenous DNA gyrase inhibitor. J Biol Chem, 2002, 277, (42), 39070-39073.
  147. Ashiuchi, M.; Yoshimura, T.; Esaki, N.; Ueno, H.; Soda, K., Inactivation of Glutamate Racemase of Pediococcus pentosaceus with L-Serine O-Sulfate. Bioscience, Biotechnology, and Biochemistry, 1993, 57, (11), 1978-1979.
  148. de Dios, A.; Prieto, L.; Martin, J.A.; Rubio, A.; Ezquerra, J.; Tebbe, M.; Lopez de Uralde, B.; Martin, J.; Sanchez, A.; LeTourneau, D.L.; McGee, J.E.; Boylan, C.; Parr, T.R., Jr.; Smith, M.C., 4-Substituted D-glutamic acid analogues: the first potent inhibitors of glutamate racemase (MurI) enzyme with antibacterial activity. J Med Chem, 2002, 45, (20), 4559-4570.
  149. Lundqvist, T.; Fisher, S.L.; Kern, G.; Folmer, R.H.; Xue, Y.; Newton, D.T.; Keating, T.A.; Alm, R.A.; de Jonge, B.L., Exploitation of structural and regulatory diversity in glutamate racemases. Nature, 2007, 447, (7146), 817-822.
  150. Geng, B.; Basarab, G.; Comita-Prevoir, J.; Gowravaram, M.; Hill, P.; Kiely, A.; Loch, J.; MacPherson, L.; Morningstar, M.; Mullen, G.; Osimboni, E.; Satz, A.; Eyermann, C.; Lundqvist, T., Potent and selective inhibitors of Helicobacter pylori glutamate racemase (MurI): pyridodiazepine amines. Bioorg Med Chem Lett, 2009, 19, (3), 930-936.
  151. Breault, G.A.; Comita-Prevoir, J.; Eyermann, C.J.; Geng, B.; Petrichko, R.; Doig, P.; Gorseth, E.; Noonan, B., Exploring 8-benzyl pteridine-6,7-diones as inhibitors of glutamate racemase (MurI) in gram-positive bacteria. Bioorg Med Chem Lett, 2008, 18, (23), 6100-6103.
  152. Sujana, P.; Sridhar, T.M.; Josthna, P.; Naidu, C.V., Antibacterial Activity and Phytochemical Analysis of Mentha piperita; L. (Peppermint)—An Important Multipurpose Medicinal Plant. American Journal of Plant Sciences, 2013, 04, (01), 77-83.
  153. Reed, P.; Atilano, M.L.; Alves, R.; Hoiczyk, E.; Sher, X.; Reichmann, N.T.; Pereira, P.M.; Roemer, T.; Filipe, S.R.; Pereira-Leal, J.B.; Ligoxygakis, P.; Pinho, M.G., Staphylococcus aureus Survives with a Minimal Peptidoglycan Synthesis Machine but Sacrifices Virulence and Antibiotic Resistance. PLoS Pathog, 2015, 11, (5), e1004891.
  154. Zulkifli, A.; Ahmad, A., Detection of methicillin resistant Staphylococcus aureus (MRSA) from recreational beach using the mecA gene. AIP Conference Proceedings, 2015, 1678, 030011.
  155. Favela-Hernández, J.; Clemente-Soto, A.; Balderas-Rentería, I.; Garza-González, E.; Camacho-Corona, M., Potential Mechanism of Action of 3'-Demethoxy-6-O-demethyl-isoguaiacin on Methicillin Resistant Staphylococcus aureus. Molecules, 2015, 20, (7), 12450-12458.
  156. Monnet, V., Bacterial oligopeptide-binding proteins. Cell. Mol. Life Sci., 2003, 60, (10), 2100-2114.
  157. Adhikari, S.; Curtis, P.D., DNA methyltransferases and epigenetic regulation in bacteria. FEMS Microbiol. Rev., 2016, 40, (5), 575-591.
  158. Palacios, L.; Rosado, H.; Micol, V.; Rosato, A.E.; Bernal, P.; Arroyo, R.; Grounds, H.; Anderson, J.C.; Stabler, R.A.; Taylor, P.W., Staphylococcal phenotypes induced by naturally occurring and synthetic membrane-interactive polyphenolic beta-lactam resistance modifiers. PLoS One, 2014, 9, (4), e93830.
  159. Murtaza, G.; Karim, S.; Akram, M.R.; Khan, S.A.; Azhar, S.; Mumtaz, A.; Bin Asad, M.H., Caffeic acid phenethyl ester and therapeutic potentials. Biomed Res Int, 2014, 2014, 145342.
  160. Mori, A.T., S., Antibacterial activity and mode of action of plant flavonoids against Proteus vulgaris and Staphylococcus aureus. Phytochemistry, 1987, 26, (8), 2231-2234.
  161. Xu, H.L., S., Activity of plant flavonoids against antibiotic-resistant bacteria. Phytother Res., 2001, 15, 39-43.
  162. Ghimire, B.K.; Yu, C.Y.; Chung, I.M., Assessment of the phenolic profile, antimicrobial activity and oxidative stability of transgenic Perilla frutescens L. overexpressing tocopherol methyltransferase (gamma-tmt) gene. Plant Physiol Biochem, 2017, 118, 77-87.
  163. Dias-Souza, M.V.; Dos Santos, R.M.; Ceravolo, I.P.; Cosenza, G.; Ferreira Marcal, P.H.; Figueiredo, F.J.B., Euterpe oleracea pulp extract: Chemical analyses, antibiofilm activity against Staphylococcus aureus, cytotoxicity and interference on the activity of antimicrobial drugs. Microb Pathog, 2017, 114, 29-35.
  164. Dias-Souza, M.V.; Dos Santos, R.M.; de Siqueira, E.P.; Ferreira-Marcal, P.H., Antibiofilm activity of cashew juice pulp against Staphylococcus aureus, high performance liquid chromatography/diode array detection and gas chromatography-mass spectrometry analyses, and interference on antimicrobial drugs. J Food Drug Anal, 2017, 25, (3), 589-596.
  165. Kline, K.A.; Lewis, A.L., Gram-Positive Uropathogens, Polymicrobial Urinary Tract Infection, and the Emerging Microbiota of the Urinary Tract. Microbiol Spectr, 2016, 4, (2).
  166. Mace, S.; Truelstrup Hansen, L.; Rupasinghe, H.P.V., Anti-Bacterial Activity of Phenolic Compounds against Streptococcus pyogenes. Medicines (Basel), 2017, 4, (2).
  167. Singh, A.K.; Prakash, P.; Singh, R.; Nandy, N.; Firdaus, Z.; Bansal, M.; Singh, R.K.; Srivastava, A.; Roy, J.K.; Mishra, B.; Singh, R.K., Curcumin Quantum Dots Mediated Degradation of Bacterial Biofilms. Front Microbiol, 2017, 8, 1517.
  168. Lin, Y.T.; Kwon, Y.I.; Labbe, R.G.; Shetty, K., Inhibition of Helicobacter pylori and associated urease by oregano and cranberry phytochemical synergies. Appl Environ Microbiol, 2005, 71, (12), 8558-8564.
  169. Shetty, K., Wahlqvist, L.M., A model for the role of the proline-linked pentosephosphate pathway in phenolic phytochemical biosynthesis and mechanism of action for human health and environmental applications. Asia Pac. J. Clin. Nutr., 2004, 13, 1-24.
  170. Ooshima, T.H., S., Oolong Tea Polyphenols Inhibit Experimental Dental Caries in SPF Rats Infected with Mutatis Streptococci. Caries Res, 1993, 27, 124-129.
  171. Gregoire, S.; Singh, A.P.; Vorsa, N.; Koo, H., Influence of cranberry phenolics on glucan synthesis by glucosyltransferases and Streptococcus mutans acidogenicity. J Appl Microbiol, 2007, 103, (5), 1960-1968.
  172. Yoo, S.; Murata, R.M.; Duarte, S., Antimicrobial traits of tea- and cranberry-derived polyphenols against Streptococcus mutans. Caries Res, 2011, 45, (4), 327-335.
  173. Hisano, M.; Yamaguchi, K.; Inoue, Y.; Ikeda, Y.; Iijima, M.; Adachi, M.; Shimamura, T., Inhibitory effect of catechin against the superantigen staphylococcal enterotoxin B (SEB). Arch Dermatol Res, 2003, 295, (5), 183-189.
  174. Tsuchiya, H.; Iinuma, M., Reduction of membrane fluidity by antibacterial sophoraflavanone G isolated from Sophora exigua. Phytomedicine, 2000, 7, (2), 161-165.
  175. Mirzoeva, O.K.; Grishanin, R.N.; Calder, P.C., Antimicrobial action of propolis and some of its components: the effects on growth, membrane potential and motility of bacteria. Microbiological Research, 1997, 152, (3), 239-246.
  176. Monagas, M.; Urpi-Sarda, M.; Sanchez-Patan, F.; Llorach, R.; Garrido, I.; Gomez-Cordoves, C.; Andres-Lacueva, C.; Bartolome, B., Insights into the metabolism and microbial biotransformation of dietary flavan-3-ols and the bioactivity of their metabolites. Food Funct, 2010, 1, (3), 233-253.
  177. Ait-Ouazzou, A.; Espina, L.; Gelaw, T.K.; de Lamo-Castellvi, S.; Pagan, R.; Garcia-Gonzalo, D., New insights in mechanisms of bacterial inactivation by carvacrol. J Appl Microbiol, 2013, 114, (1), 173-185.
  178. Gupta, P.D.; Birdi, T.J., Development of botanicals to combat antibiotic resistance. J Ayurveda Integr Med, 2017.
  179. Warnke, P.H.; Becker, S.T.; Podschun, R.; Sivananthan, S.; Springer, I.N.; Russo, P.A.; Wiltfang, J.; Fickenscher, H.; Sherry, E., The battle against multi-resistant strains: Renaissance of antimicrobial essential oils as a promising force to fight hospital-acquired infections. J Craniomaxillofac Surg, 2009, 37, (7), 392-397.
  180. Brooker, J.M., P., Streptococcus caprinus sp.nov., a tannin-resistant ruminal bacterium from feral goats. Applied Microbiology, 1994, 18, 313-318.
  181. Smith, A.H.; Zoetendal, E.; Mackie, R.I., Bacterial mechanisms to overcome inhibitory effects of dietary tannins. Microb Ecol, 2005, 50, (2), 197-205.