
OEM DLL

Version 6

 1005458

Manual

© 2007 BRUKER OPTIK GmbH, Rudolf-Plank-Str. 27, D-76275 Ettlingen, www.brukeroptics.com

All rights reserved. No part of this publication may be reproduced or transmitted in any form or by any
means including printing, photocopying, microfilm, electronic systems etc. without our prior written
permission. Brand names, registered trade marks etc. used in this manual, even if not explicitly marked
as such, are not to be considered unprotected by trademarks law. They are the property of their respec-
tive owner.

The following publication has been worked out with utmost care. However, Bruker Optik GmbH does
not accept any liability for the correctness of the information. Bruker Optik GmbH reserves the right to
make changes to the products described in this manual without notice.

This manual is the original documentation for the OPUS / OEM DLL.

Table of Contents
1 How to use the OEM DLL . 1-1

2 Prerequisities . 2-1

3 Interface Functions . 3-1
3.1 Calling OPUS Functions . 3-2

3.1.1 Calling from the Command Line . 3-2

4 The DLL and a full OPUS Version . 4-1

5 Implementation . 5-1
5.1 Using C/C++ . 5-1
5.2 Changing measurement parameters . 5-2
5.3 Doing Evaluations . 5-2
5.4 Using VB . 5-3

6 Required Files . 6-1

7 OPUS Command Reference . 7-1
7.1 Command Syntax of OPUS Functions . 7-1
7.2 Including OPUS Commands in Macros . 7-1
7.3 Measurement Commands . 7-4
7.4 Reference Section . 7-5
7.5 OPUS Functions Sorted Alphabetically . 7-5
7.6 OPUS Functions Sorted by Type . 7-7
7.7 OPUS Manipulation Functions . 7-8

7.7.1 ABTR . 7-8
7.7.2 Average . 7-9
7.7.3 Baseline . 7-10
7.7.4 BlackBody . 7-10
7.7.5 Convert . 7-10
7.7.6 Cut . 7-11
7.7.7 Deconvolution . 7-11
7.7.8 Derivative . 7-11
7.7.9 Extrapolation . 7-12
7.7.10 FFT . 7-12
7.7.11 FreqCalibration . 7-14
7.7.12 InverseFT . 7-14
7.7.13 KramersKronig . 7-15
7.7.14 MakeCompatible . 7-15
7.7.15 Merge . 7-16
7.7.16 Normalize . 7-16

7.7.17 PostFTZerofill . 7-16
7.7.18 RamanCorrection . 7-17
7.7.19 Smooth . 7-17
7.7.20 StraightLine . 7-17
7.7.21 Subtract . 7-18

7.8 OPUS Evaluation Functions . 7-18
7.8.1 Integrate . 7-18
7.8.2 PeakPick . 7-19
7.8.3 SignalToNoise . 7-20

7.9 OPUS File Functions . 7-20
7.9.1 ChangeDataBlockType . 7-20
7.9.2 CopyDataBlock . 7-20
7.9.3 DeleteDataBlock . 7-21
7.9.4 Restore . 7-21
7.9.5 Save, SaveAs . 7-21
7.9.6 SendFile . 7-22
7.9.7 Unload . 7-22

7.10 OPUS Measurement Functions . 7-23
7.10.1 Measurement Commands . 7-23
7.10.2 SendCommand . 7-23
7.10.3 SaveReference . 7-24
7.10.4 LoadReference . 7-24

7.11 OPUS Library Functions . 7-24
7.11.1 LibrarySearchInfo . 7-24
7.11.2 LibrarySearchPeak . 7-25
7.11.3 LibrarySearchStructure . 7-26
7.11.4 LibrarySearchSpectrum . 7-27
7.11.5 LibraryInitialize . 7-28
7.11.6 LibraryStore . 7-29
7.11.7 LibraryEdit . 7-29
7.11.8 InfoInput . 7-30

7.12 Miscellaneous OPUS Functions . 7-31
7.12.1 ExternalProgram . 7-31
7.12.2 ParameterEditor . 7-33
7.12.3 Plot . 7-34
7.12.4 VBScript . 7-35

8 Client/Server Reference . 8-1
8.1 Overview of Available Functions . 8-1
8.2 Commands and Command Syntax . 8-1
8.3 Old C/S Commands . 8-2

8.3.1 Overview . 8-2
8.3.2 CLOSE_PIPE . 8-3
8.3.3 COUNT_ENTRIES . 8-3
8.3.4 READ_FROM_ENTRY . 8-4
8.3.5 WRITE_TO_ENTRY . 8-4
8.3.6 READ_FROM_FILE . 8-5
8.3.7 WRITE_TO_FILE . 8-6
8.3.8 READ_FROM_BLOCK . 8-7

8.3.9 WRITE_TO_BLOCK . 8-8
8.3.10 ASCII . 8-8
8.3.11 BINARY . 8-9
8.3.12 DATA_VALUES . 8-9
8.3.13 DATA_POINTS . 8-9
8.3.14 READ_HEADER . 8-10
8.3.15 READ_DATA . 8-11
8.3.16 WRITE_HEADER . 8-13
8.3.17 WRITE_DATA . 8-14
8.3.18 COPY_DATA . 8-15
8.3.19 LOAD_FILE . 8-16
8.3.20 UNLOAD_FILE . 8-17
8.3.21 START_MACRO . 8-17
8.3.22 FILE_PARAMETERS . 8-19
8.3.23 OPUS_PARAMETERS . 8-20
8.3.24 READ_PARAMETER . 8-20
8.3.25 WRITE_PARAMETER . 8-21
8.3.26 RUN_MACRO . 8-21
8.3.27 MACRO_RESULTS . 8-22
8.3.28 KILL_MACRO . 8-23

8.4 Obsolete Commands . 8-23
8.4.1 OVERWRITE . 8-24
8.4.2 PRESERVE . 8-24
8.4.3 TIMEOUT . 8-25

8.5 New Commands . 8-25
8.5.1 BYTE_MODE . 8-26
8.5.2 INT_MODE . 8-26
8.5.3 FLOAT_MODE . 8-26
8.5.4 DOUBLE_MODE . 8-27
8.5.5 HEXSTRING_MODE . 8-27
8.5.6 FLOATCONV_MODE . 8-27
8.5.7 GET_DISPLAY . 8-28
8.5.8 SET_WINDOW . 8-28
8.5.9 NEW_WINDOW . 8-29
8.5.10 CLOSE_WINDOW . 8-29
8.5.11 POSITION_WINDOW . 8-30
8.5.12 GET_LANGUAGE . 8-30
8.5.13 GET_OPUSPATH . 8-31
8.5.14 GET_BASEPATH . 8-31
8.5.15 GET_DATAPATH . 8-31
8.5.16 GET_WORKPATH . 8-32
8.5.17 GET_USERNAME . 8-32
8.5.18 GET_BENCH . 8-33
8.5.19 UPDATE_BENCH . 8-33
8.5.20 COMMAND_SAY . 8-34
8.5.21 REPORT_INFO . 8-34
8.5.22 HEADER_INFO . 8-35
8.5.23 MATRIX_INFO . 8-36
8.5.24 MATRIX_ELEMENT . 8-36
8.5.25 HEADER_ELEMENT . 8-37

8.5.26 COMMAND_MODE . 8-38
8.5.27 EXECUTE_MODE . 8-39
8.5.28 REQUEST_MODE . 8-39
8.5.29 CLOSE_OPUS . 8-40
8.5.30 TAKE_REFERENCE . 8-40
8.5.31 MEASURE_SAMPLE . 8-40
8.5.32 COMMAND_LINE . 8-41
8.5.33 STOP_THREAD . 8-42
8.5.34 ACTIVATE_DIALOG . 8-42
8.5.35 LOAD_EXPERIMENT . 8-43
8.5.36 GET_USERRIGHTS . 8-43
8.5.37 PACKET_AVAILABLE . 8-44
8.5.38 GET_CLIENTAREA . 8-44
8.5.39 ACTIVATE_DISPLAY . 8-45
8.5.40 GET_LIMITS . 8-45
8.5.41 SET_LIMITS . 8-46
8.5.42 DISPLAY_BLOCK . 8-46
8.5.43 UNDISPLAY_BLOCK . 8-47
8.5.44 ENUM_STRINGS . 8-47
8.5.45 GET_VERSION . 8-48
8.5.46 ASK_THREAD . 8-49
8.5.47 FIND_FUNCTION . 8-49
8.5.48 WORKBOOK_MODE . 8-50
8.5.49 GET_SELECTED . 8-50
8.5.50 LIST_BLOCKS . 8-51
8.5.51 SHOW_TOOLBAR . 8-52
8.5.52 HIDE_TOOLBAR . 8-52
8.5.53 QUICK_PRINT . 8-53

9 Problems and Solutions . 9-1
9.1 Startup problem . 9-1
9.2 "Failed to open document" . 9-1
9.3 File not found in filetable . 9-1
9.4 Error in commandline . 9-1
9.5 VB error 48/53 . 9-2

Bruker Optik GmbH OEM DLL 1–1

1 How to use the OEM DLL
For OEM customers or system integrators, we have a special option to get data
from our instruments.

It consists of a main Opus-DLL with a few support DLLs for FT and data
handling etc..

This will allow communication to instruments and doing measurements as well
as basic data manipulation and evaluation functions.

In case special packages like QUANT are needed an OEM would be able to
simply add a few more DLLs to the distribution and receive new registration
codes for the extended packages

Therefore if ALL these DLLs containing Opus evaluation or manipulation
functions are packed onto the developers CD, and it is thus possible to perform
nearly every function available in a full Opus.

Functions of the DLL are directly called from the custom program (C calling
conventions).

An OEM customer will be supplied with a CD containing:

• - the necessary DLLs,
• - a header file with the function declarations,
• - a library to link with his application and
• - some sample projects.

The code was written and tested with VC6/Visual Studio 2003 and VB.Net.

In addition, customers have successfully used the DLL from:

• C++ VC6 + Borland + VS2003
• Visual Basic
• VB.NET
• Java and
• Delphi

The environment being XP, XP embedded or Windows 2000.

How to use the OEM DLL

1–2 OEM DLL Bruker Optik GmbH

Bruker Optik GmbH OEM DLL 2–1

2 Prerequisities

Registration needed

To use the DLLs, an OEM must make sure that:

• the customer owns a Bruker Optik spectrometer,
• the customer owns legally a license (called OPUS/DLL) to use the

OPUS-DLLs on this spectrometer and
• the Bruker Optik end-user license terms are valid/observed.

Spectrometers will have to be equipped minimum with the basic OPUS package
(OPUS/IR) in order to facilitate for service and/or validation.

If a full OPUS version is also installed enter the registration data in Opus and it
will work for the DLL as well.

In this case both should be of the same version i.e. OPUS6 with DLLs version 5
might cause problems and vice versa.

Access

In addition you need write access to the current application directory for some
temporary files. Furthermore, the .ows file also defines where the intermidiate
work files will be stored what might cause access problems as well. In this case
try replacing the .ows file with the original version from the CD.

Prerequisities

2–2 OEM DLL Bruker Optik GmbH

Bruker Optik GmbH OEM DLL 3–1

3 Interface Functions
Functions that can be called via the DLL interfaces are only five including:

1) Initialization to connect to the instrument
2) Scan background command
3) Measure Sample command
4) GetCollectedData command plus
5) the full set of client/server commands know from DDE/Pipe/Script to

fulfill ANY other needs.

This should be a very simple way to acquire data. However, basic knowledge of
the normal operation of the instrument under Opus will be needed.

The prototypes of the available functions as in the file BO_OEM.H are as
follows:

UINT InitInstrument(LPCTSTR pConfigFile, LPTSTR pResult, UINT
uiBufferLen);
UINT BackgroundScan(LPCTSTR pXPM, LPTSTR pResult, UINT
uiBufferLen);
UINT SampleScan(LPCTSTR pXPM, LPTSTR pResult, UINT uiBufferLen);
UINT GetAcquiredData(LPTSTR pResult, UINT uiBufferLen);
UINT DirectCommandCall(LPCTSTR pCommand, LPTSTR pResult, UINT
uiBufferLen);

Each function takes a parameter pResult that is a Pointer to a buffer that will
receive the result of the function and a parameter uiBufferLen that holds the
length of the buffer that receives the result.

All the pResults parameters are [Out], i.e. the result will be written into that
buffer. The rest is always [In].

Each function will directly return the length of the result. The result usually is
"OK" or an error message or the measured data written into pResult

InitInstrument connects to an Instrument. The instrument is defined by an .NTI
file found in the same directory as the application. The name is passed in
pConfigFile. Call this function once when the application is initializing.

The .nti file describes the type of the optical bench. So you have to choose the
one corresponding to your instrument,

 "Reconnect request started" would be a correct answer to the InitInstrument
call. So this did work.

BackgroundScan executes a background measurement. The parameters are
defined by an Opus Experiment file whose name is passed in pXPM.

Interface Functions

3–2 OEM DLL Bruker Optik GmbH

OK0 indicates that the background measurement has been completed.

 SampleScan executes a sample measurement. The parameters are defined by an
Opus Experiment file whose name is passed in pXPM.

GetAcquiredData receives the data collected by the last SampleScan command.

DirectCommandCall allows the execution of any Opus Client/Server command,
see reference chapters for details. A command line is send as text and for Opus
functions it will look like:

3.1 Calling OPUS Functions

Typical OPUS manipulation functions can also be called as a text command.
The corresponding uniform syntax can be used wherever a function
specification is started by a text command in OPUS:

• in the command line interface
• within macros
• in DDE requests of an external client program to the OPUS server
• within scripts

Syntax:

<Function> ([File],{Parameter})

This chapter gives a brief overview. For details on each calling option refer to
the following chapters.

3.1.1 Calling a Command Line

OPUS contains a simple command line interpreter.

For example, if you enter

Baseline (["e:\opus\data\abboe05.0"],{})

aa the command line, the file ABBOE05.0 will be baseline corrected. If the
spectrum file has not been loaded in OPUS, it will be automatically loaded prior
to the baseline correction.

The file (including path) to be processed has to be enclosed in inverted commas.
The empty braces at the end of the command indicate that no parameters have
been specified. In this case the default values will be used. However, if you
want to make specific settings, you have to enter the corresponding OPUS
parameters. In general, OPUS parameters consist of a three-character code,
followed by an equal sign and a value (e.g. BME=1). Several parameters have
to be separated by a comma. Which parameters you have to use with which
values depend on the particular functions. For a detailed description, see the
respective function.

Calling OPUS Functions

Bruker Optik GmbH OEM DLL 3–3

A file can also be loaded more than once at the same time. Therefore, a number
is added after the file name to identify the version of the file. This number is
called clone count. Furthermore, a data file can consist of several data blocks,
which can be addressed separately by a colon:

Baseline (["e:\opus\data\abboe05.0" 3:AB], {})

The above command processes the absorption data block (AB) of the third
version (copy) of the ABBOE05.0 file.

Despite Opus using multitasking heavily inside this DLL functions will only
return once the command has been completed. However, you can call them
from a background thread but make sure that your program does not multiply
call these functions at the same time!

Interface Functions

3–4 OEM DLL Bruker Optik GmbH

Bruker Optik GmbH OEM DLL 4–1

4 The DLL and a full OPUS
Version
Both OPUS and an application using the DLLs can be used on the same PC.
However, only one can run at each time.

We do register the application to prevent two instances running at the same time
which might cause all sorts of problems. E.g. when multiple instances try to
access the same optical bench. You will get a message that reads "Sorry we are
already running" (or sometimes an empty box since the resource is not loaded
until InitInstrument) if you did try running the second instance incidentally.

There is one thing that might interfere here that is the DLL will share the last
workspace used by Opus itself. After using OPUS take a look in the registry
under:

HKEY_CURRENT_USER\Software\BRUKER\OPUS\Recent File List

and make sure that this points to a valid workspace as well or remove that
particular key completely to use the DLL.

Also both use the same location in the registry to store the information about the
last instrument used. Therefore, check what is registered under:

HKEY_LOCAL_MACHINE\SOFTWARE\BRUKER\OPUS\HARD-
WARE\Bench

resp. restore the correct value from within your program.

The DLL and a full OPUS Version

4–2 OEM DLL Bruker Optik GmbH

Using C/C++

Bruker Optik GmbH OEM DLL 5–1

5 Implementation
When implementing your application you can either statically link to the
Opus.dll or use LoadLibrary. Statically linking is recommended but
LoadLibrary does work as well. In that case do not unload the DLL in your
program until you exit. The point is that the mutex used to prevent two instances
is only freed when the complete process i.e. your program terminates.

You don not have to register the opus.dll. Functions inside the DLL are directly
called from your application using C calling conventions

In case LoadLibrary returns null this does mean an error occured during loading
or initialisation. One reason might be that some files (other dlls) are missing.
Make sure that your application and all the files from the CD are in the same
directory.

Inside the DLL some decorated names are used. Usually you won't see these
names if you use the bo_oem.h include file and the library opus.lib which also
comes with the CD.

5.1 Using C/C++

To compile an OEM application, you need from the CD the header file

BO_OEM.h

And to link the application you need the library file

OPUS.LIB

A simple VC6 sample is included on the CD called CALLDLL

All function calls are found in the module calldll.cpp and are basically always
done in the same manner:

Reserve space for answer, the call function and show the result:

char Buffer[1024];
InitInstrument("matrix.nti",Buffer,1024);
AfxMessageBox(Buffer);

After initializing the instrument you can use the other function calls like a
sequence BackgroundScan, SampleScan and GetAcquiredData to get the
resulting spectrum. See sample code on the CD.

Implementation

5–2 OEM DLL Bruker Optik GmbH

5.2 Changing measurement parameters

For the simple sample above all measurement parameters are defined by the
experiment (.XPM) file. If you must change several of the parameters either
define several sets of .XPMs or overwrite them in the commands.

Directly modifying the XPM is NOT the way to go. This is a binary format that
you really don't want to access.

If you have to change parameters like resolution or number of scans we cannot
go with the simple DLL function calls but rather send some more direct
commands to Opus that allow you to change all the parameters. This is done via
a call to "DirectCommandCall" instead of SampleScan. As the command send a
string that is formatted like this:

"MeasureSample (0, {EXP='test.XPM', XPP='C:\OPUS\XPM', NSS=123})"

EXP defines the basic experiment file, XPP the corresponding path and NSS
sets the number of scans to 123. This command will return the result filename
and you will have to send a few more commands to get the actual data:

READ_FROM_FILE ResultFile
READ_FROM_BLOCK AB (if you acquire absorbance data)
DATA_POINTS
READ_DATA (get the results as text)
UNLOAD_FILE ResultFile (for cleanup)

5.3 Doing Evaluations

A more complicated sequence would e.g. include some parameter overwriting
and maybe the call to a Quant method for an evaluation.

The following sequence demonstrates the basic principle how this is going to be
achieved.

CString csXPM("Simulator.xpm"), csQ2("test.q2");
char Buffer[1024];
CString csCommand = "MeasureSample({WRK=3, MOP='EXP

XPP DEL', EXP='";
csCommand += csXPM;
csCommand +="', XPP='d:\\oem55', DEL=0})";
DirectCommandCall(csCommand,Buffer,1024);
CString csResult = CString((char*)Buffer);
INT pos1 = csResult.Find('\n');
INT pos2 = csResult.Find('\n', pos1+1);
pos1 = csResult.Find('\n', pos2+1);
pos2 = csResult.Find('\n', pos1+1);
CString csName = csResult.Mid(pos1+1, pos2-pos1-1);

Using VB

Bruker Optik GmbH OEM DLL 5–3

csCommand = "Quant2 ([";
csCommand +=csName;
csCommand +=":AB], {QP2='D:\\oem55', QF2='";
csCommand += csQ2;
csCommand +="'});";
DirectCommandCall(csCommand,Buffer,1024);

csCommand = "READ_FROM_FILE ";
csCommand +=csName;
DirectCommandCall(csCommand,Buffer,1024);
DirectCommandCall("READ_FROM_BLOCK AB/

Quant",Buffer,1024);
DirectCommandCall("MATRIX_ELEMENT 1 0 1

2",Buffer,1024);
csResult = CString((char*)Buffer);
CString csQuantResult = csResult.Right(csResult.GetLength()-

4);

csCommand = "Unload ([";
csCommand +=csName;
csCommand +=":AB], {});";
DirectCommandCall(csCommand,Buffer,1024);

The OPUS DLL supports also multiplexed Bruker instruments with more than
one probe. You can use the "CHN=Fibre 2" etc. commands to switch between
the different probes.

These instruments acquire data for one probe at a time. Thus you have to call
the measurement for each channel.

5.4 Using VB

We implemented a very simple project in VB6 that calls all the necessary
interface functions of the DLL that can be found on the CD.

You don't need any header or .lib files, the functions just have to get introduced
to VB using "Declare function":

 'Functions exported from OPUS.DLL sorted by ordinal number:
 Public Declare Function BackgroundScan Lib "Opus.dll" _
 Alias "#1" _
 (ByVal XpmFile As String, _
 ByVal Result As String, _
 ByVal BufferLen As Integer) As Integer
 Public Declare Function DirectCommandCall Lib "Opus.dll" _
 Alias "#2" _
 (ByVal Command As String, _
 ByVal Result As String, _
 ByVal BufferLen As Integer) As Integer
 ' ForRunDLL32 ordinal number 3
 Public Declare Function GetAcquiredData Lib "Opus.dll" _
 Alias "#4" _

Implementation

5–4 OEM DLL Bruker Optik GmbH

 (ByVal Result As String, _
 ByVal BufferLen As Integer) As Integer
 Public Declare Function InitInstrument Lib "Opus.dll" _
 Alias "#5" _
 (ByVal ConfigFile As String, _
 ByVal Result As String, _
 ByVal BufferLen As Integer) As Integer
 Public Declare Function SampleScan Lib "Opus.dll" _
 Alias "#6" _
 (ByVal XpmFile As String, _
 ByVal Result As String, _
 ByVal BufferLen As Integer) As Integer

In the Sub Form_Load() you would then e.g. load the library and call
InitInstrument:

 Dim strResult As String
 Dim RetVal As Integer
 Dim Buffer As String
 Dim nHMod As Long

 nHMod = LoadLibrary("opus.dll")

 Buffer = String(1024, vbNullChar)
 RetVal = InitInstrument("matrix.nti", Buffer, 1023)
 strResult = Buffer
 Text1.Text = strResult

Issuing command would be done as follows:

Private Sub Command1_Click()
 Dim strResult As String
 Dim intResult As Integer
 Dim Buffer As String
 Buffer = String(1024, vbNullChar)
 intResult = DirectCommandCall("GET_VERSION", Buffer, 1024)
 strResult = Buffer
 Text1.Text = strResult
End Sub

The GET_VERSION command of this sample will return the version of the
currently used DLL.

Bruker Optik GmbH OEM DLL 6–1

6 Required Files
There are many files on the CD-ROM, because we offer different DLLs
providing a lot of different functions also for OEM applications.

Only a few of those are needed if you are just measuring spectra.

Even if the DLL has only 5 function calls it is possible via the
DirectCommandCall function to do almost any evaluation or manipulation that
is possible within a normal Opus. E.g. a quantitative analysis, but if you do not
do this you will not have to include the quant.dll.

You might e.g. need instrument tests etc. and those do require a lot of function
apart from measuring and doing an FT. E.g. Integration, reading Reports,
Smooth, Spectrum Calculator, PeakPicking, SignalToNoise etc.

To redistribute an application, you need the following DLL in the same
directory as the main program (or somewhere in the search path):

• opus.dll
• fileutil.dll
• measure.dll
• opusfft.dll
• macro.dll
• display.dll
• fileutil.dll
• nwc.dll
• nwutil.dll
• og70as.dll
• onldisp.dll
• opusutil.dll
• osc60as.dll
• otp60as.dll
• pledll.dll
• plot3d.dll
• wct32dr3.dll
• wrt32dr3.dll
• wtOPCSvr.dll
• wtClient.dll

Required Files

6–2 OEM DLL Bruker Optik GmbH

Additionally the following parameter files are needed:

• parmtext.bin
• original.p
• opus.par
• opus.fnc

And at least one *.nti file defining the instrument and an *.XPM file defining
the measurement parameters.

If plotting is desired add also the *.PLE files.

Simple evaluation and manipulation function are found in these DLLs which
will be needed for operation e.g. like OVP.

• evaluate.dll
• interactive.dll
• manipulate.dll

The rest of the DLL is only needed when special packages like Quant etc.
should be used via the Opus.dll:

• birsy.dll
• quant.dll
• quanta.dll
• ident.dll
• semi.dll
• file3d.dll
• procctrl.dll
• heppfrie.dll
• neuro.dll
• manipulate_2.dll

The workspace: e.g. default.ows

All the recent parameter settings for all opus functions are stored in the
workspace (.ows). With the DLL you will most likely define the parameters
yourself. Therefore you only have to supply the default setting.

However, the DLL will check the registry for the MRU .ows file and use that
with precedence. If none is registered default.ows will be used.

The userdatabse: userdatabase.dat

If the is a userdatabe from an Opus version this will be used by the dll. But
normally this will not be present and the dll will instead create an intermediate
one.

Bruker Optik GmbH OEM DLL 6–3

The instrument definition: e.g. matrix.nti

What .nti file should I use in the InitInstrument function?

That depends on the instrument you want to talk to. If the kind of optical bench
you are using is same kind of Matrix matrix.nti would be a good starting point.
If you have Opus running with the instrument check the "Optical Bench" Tab
under "Optic Setup and Service" and use the name you see in the Configuration
field. You don't have to ship the other .nti files as well.

The NTI files must exist. Opus will update these files whenever the instrument
configuration changes.

For the NTI files this is not necessary to touch them since the optical bench will
automatically tell Opus to update the contents when e.g. a new detector is
plugged in.

The ONLY change you might consider is changing the IP address. The IP
address of the instrument is stored on the instrument and it has to be predefined
in advance for Opus inside the .NTI file.

The NTI file only defines what type of instrument is available and where (IP) it
is found. If you modify the address in the optics make sure you change the NTI
file as well.

The measurement parameters: *.xpm

The XPM files do contain all the measurement parameters. This is an OPUS
specific binary format and the only reasonable way to create these files is via
OPUS. Use an instrument that is setup with the settings as you need them and
let Opus store this setup in an XPM file.

XPMs should not be generated by direct commands, because normally you use
an existing one and can overwrite any parameter directly in the command.

That is the XPM defines only the default values and everything that is send
within the command line will overwrite the value from the XPM file.

Is there a limitation to "change" a value of one parameter?

No, the following ones are only the most common parameters. Usually people
using these commands don't modify more than these:

SNN, SFM, CNM, XPM, XPP, RES, NSS

But, you can pass any parameter that the instrument supports also in the same
command line.

Make sure to use measurement parameters that are appropriate for the
instrument that you are connected to. I.e. for using a Matrix instrument you
need a matrix.nti file and e.g. a matching matrix.xpm. Otherwise you might get
error messages complaining about illegal parameters.

Required Files

6–4 OEM DLL Bruker Optik GmbH

Command Syntax of OPUS Functions

Bruker Optik GmbH OEM DLL 7–1

7 OPUS Command Reference
The OPUS commands accessible from the OPUS pull-down menus call OPUS
processing functions, that in turn perform the desired manipulation. These
OPUS processing function can be included in macros, scripts and external
programs. Alternatively to launching a function via the OPUS pull-down menu
command, the function name can be typed in the OPUS command line.

7.1 Command Syntax of OPUS Functions

Syntax:

CommandName (Input List 1, ..., Input List n, {PAR 1=Value 1, ..., PAR
n=Value n});

CommandName name of the OPUS command.

Input List n list of input files (see below).

PAR n three letter parameter name n.

Value n value for parameter n.

Syntax for file list:

([<File 1>:BlockID 1] ... [<File n>:BlockID n]

<File n>name of input file or the file variable n.

BlockID nname of the data block of file n.

Note that the files in a list are separated by blanks, while the lists themselves are
separated by commas. Most functions require only one file list; a few files
however, (like Make Compatible or Subtraction) need several file lists.

7.2 Including OPUS Commands in Macros

We strongly recommend to only use the Macro Editor, if you want to include
OPUS commands into macros. Using the Macro Editor guarantees that all
relevant parameters required by the command are inlcuded in the command line
and PARAMETER section. Furthermore, it is ensured that these parameters are
initialized with valid values.

OPUS Command Reference

7–2 OEM DLL Bruker Optik GmbH

To append an OPUS command to a macro, simply select the command from the
OPUS pull-down menu, while the Macro Editor is running. Choose the appro-
propriate parameters, files and settings as usual in the dialog box of the com-
mand.

After clicking on the Execution button in the dialog box for executing the
command, the OPUS command dialog box is replaced by a parameter dialog,
that lists all parameters relevant for the processing function. When you click the
OK button, the respective OPUS processing function will be appended to the
macro.

Figure 1: Including an OPUS Command

Including OPUS Commands in Macros

Bruker Optik GmbH OEM DLL 7–3

Column 1: Abbreviation of the parameter and check box

Column 2: Parameter name

Column 3: Parameter value as set in the OPUS command dialog box

Column 4: Assigned macro variable

Whether a parameter will be appended to the command line or included in the
PARAMETER section is controlled by the check box. If the check box is not
selected, a parameter entry will be made in the PARAMETER section. We
recommend to always include all parameters in the command line. This
ensures, that the commands are using correct parameter values at the time of
command execution, in case a command or a goup of commands accessing the
same parameter is repetedly used. A parameter may only appear once in the
PARAMETER section and therefore, the parameter can only have one value.
The only exception to this rule are the measurement commands, explained in
detail in the following chapters.

Note: parameters, that have been assigned macro variables must appear in
the command line!

Figure 2: Including an OPUS Command – Parameter Dialgo Box

Figure 3: Resulting Command Line

OPUS Command Reference

7–4 OEM DLL Bruker Optik GmbH

A combobox is displayed above the parameter list of OPUS commands, which
return a result or a file to the macro. From this box, you have to indicate the
variable supposed to hold the returned data. Although the OPUS command will
be processed correctly by the macro even if no variable was chosen, the
returned data then is not accessible.

7.3 Measurement Commands

As already mentioned, the measurement commands differ from the rest of the
OPUS commands. When you include the Measurement command in a macro,
you will find that only two parameters XPP and EXP are selected by default.
XPP represents the directory of the experiment file and EXP the name of the
experiment. It is highly recommended to assign macro variables to these
parameters. This guarantees, that a measurement started from a macro always
uses an existing experiment file (and therefore a defined parameter set). For
measurement functions, the remaining parameters won’t be included in the
PARAMETER section!

Other parameters than XPP and EXP should only be selected, if they are
intended to replace values stored in the experiment file or if macro variables
should be assigned to these parameters. This will become clear, if one looks at
the sequence in which a measurement command is executed.

Measurement without Using an Experiment File (not recom-
mended)

1) The measurement primarily uses the values entered in the PARAMETER
section, if anything.

2) Parameter included in the command line override the values declared in
the PARAMETER section.

Example:

[<File>] = MeasureSample (0, {NSS = 16});

Regardless of the original settings the measurement will now run 16 scans.

Measurement Using an Experiment File (XPP and EXP Selec-
ted)

The parameters of the PARAMETER section are ignored, and the parameters
stored in the experiment file will be used instead. Again, parameters included
in the command line override the values stored in the experiment file.

Example:

[<File>] = MeasureSample (0, {XPP = ’<XMP Path>’, EXP = ’default’, NSS = 16});

Regardless of the settings stored in the experiment file, the measurement will
now run 16 scans.

Reference Section

Bruker Optik GmbH OEM DLL 7–5

7.4 Reference Section

The following section describes the OPUS commands in detail. The sections
are all structured in the same way. You will find:

• the title, which consists of the OPUS command referenced in this
section.

• a summary of the command.
• an indication, whether the command modifies files or not.
• an explanation of the syntax.
• a table, listing all command parameters and their function.
• a note, if the command has not been implemented in OPUS to this

point in time.

All of the parameters you will find listed in the tables are required, and must be
stated as a part of the command. A parameter statement should therefore be
included either in the parameter list of the command or in the PARAMETER
section of the macro. If no parameter statement was made in a macro, OPUS
will use the parameters of the active parameter set, when executing the macro.
This usually leads to unpredictable results.

7.5 OPUS Functions Sorted Alphabetically

A

ABTR absorbance transmittance conversion
Average averages spectra

B

Baseline performs a baseline correction of a spectrum
BlackBody Black Body generation

C

ChangeDataBlockType changes the type of a data block
Convert converts spectra
CopyDataBlock copies a data block from one file to another
Cut cuts a frequency range out of a spectrum

D

Deconvolution Fourier self deconvolution
DeleteDataBlock deletes the specified data block
Derivative calculates the derivative

OPUS Command Reference

7–6 OEM DLL Bruker Optik GmbH

E

ExternalProgram starts an external program
Extrapolation extrapolates spectra

F

FFT Fast Fourier transformation
FreqCalibration frequency calibration

I

InfoInput adds an information block to a file
Integrate integrates a spectrum
InverseFT performs an inverse Fourier transformation

J

JCAMPToOPUS converts a JCAMP-DX file to OPUS format

K

KramersKronig performs a Kramers Kronig transformation

M

MakeCompatible makes spectra compatible
MeasureReference measures a background spectrum
Merge merges spectra

N

Normalize normalizes a spectrum

P

PeakPick creates a peak table
Plot plots spectra
PostFTZerofill Post Zerofilling of a spectrum

R

RamanCorrection applies Raman correction
Restore restores an original data file

S

Save saves a spectrum file
SendFile sends a file via e-mail
SignalToNoise calculates the Signal-to-Noise ratio

OPUS Functions Sorted by Type

Bruker Optik GmbH OEM DLL 7–7

Smooth smooths a spectrum
StraightLine inserts a straight line in a spectrum
Subtract subtracts one or more spectra from another spec-

trum

U

Unload removes a spectrum from the Browser

7.6 OPUS Functions Sorted by Type

Manipulation Functions

ABTR absorbance transmittance conversion
Average averages spectra
Baseline performs a baseline correction of a spectrum
BlackBody Black Body generation
Convert converts spectra
Cut cuts a frequency range out of a spectrum
Deconvolution Fourier self deconvolution
Derivative calculates the derivative
Extrapolation extrapolates spectra
FFT Fast Fourier transformation
FreqCalibration frequency calibration
InverseFT performs an inverse Fourier transformation
KramersKronig performs a Kramers Kronig transformation
MakeCompatible makes spectra compatible
Merge merges spectra
Normalize normalizes a spectrum
PostFTZerofill Post Zerofilling of a spectrum
RamanCorrection applies Raman correction
Smooth smooths a spectrum
StraightLine inserts a straight line in a spectrum
Subtract subtracts one or more spectra from another spec-

trum

Evaluation Functions

Integrate integrates a spectrum
PeakPick creates a peak table
SignalToNoise calculates the Signal-to-Noise ratio

File Functions

ChangeDataBlockType changes the type of a data block
CopyDataBlock copies a data block from one file to another

OPUS Command Reference

7–8 OEM DLL Bruker Optik GmbH

DeleteDataBlock deletes the specified data block
Restore restores an original data file
Save saves a spectrum file
SendFile sends a file via e-mail
Unload removes a spectrum from the Browser

Measurement Functions

MeasureReference measures a background spectrum
SendCommand send an optics command to the optics bench
SaveReference saves a reference spectrum from the AQP to disk
LoadReference loads a reference spectrum from the disk into the

AQP

Library Functions

LibrarySearchInfo information search in library files
LibrarySearchPeak peak search in library files
LibrarySearchStructure structure search in library files
LibrarySearchSpectrum spectrum search in library files
LibraryInitialize creates a new, empty library file
LibraryStore stores a new entry in a library file or replaces an

existing one
LibraryEdit edits an entry, the library description, and the

definition of information stored in a library file.
InfoInput adds an information block to a file or edits an

existing one

Miscellaneous Functions

ExternalProgram starts and external program
Plot plots spectra

7.7 OPUS Manipulation Functions

7.7.1 ABTR

Absorbance → Transmittance conversion.

This functions modifies the selected spectrum and changes the data block type
accordingly.

OPUS Manipulation Functions

Bruker Optik GmbH OEM DLL 7–9

ABTR ([<File>:BlockID], {...});

7.7.2 Average

Averages spectra.

This command requires three file lists:

File List 1: Spectra to be averaged.

File List 2: (optional) File to store the average result.

File List 3: (optional) File to store the standard deviation result.

If File List 2 and/or 3 are not specified, they have to be set to “0”.

Average ([<File 1>:BlockID 1], [<File 2>:BlockID 2], [<File 3>:BlockID 3],
{...});;

Parameter Value Description

CCM 1 automatic

2 AB → TR

3 TR → AB

Parameter Value Description

QA0 0 Do not average with number of scans

1 Average with number of scans

QA2 0 Don’t create average report

1 Create average report

QAE NO Don’t create standard deviation spectrum

YES Create standard deviation spectrum

QAF NO Don’t update standard deviation spectrum

YES Update standard deviation spectrum

QAL LIS Average selected files

FIL Average files selected by name and path

QAM Text Path of the files to be averaged

QAN Text Name of the files to be averaged

QAO Numerisch BlockID of the files to be averaged

QFB Text Path of the IDENT method

QFC Text Name of the IDENT method

OPUS Command Reference

7–10 OEM DLL Bruker Optik GmbH

7.7.3 Baseline

Performs a baseline correction of a spectrum.

This command modifies the selected spectrum.

Baseline ([<File>:BlockID], {...});

7.7.4 BlackBody

Calculates a spectrum of a Black Body radiator.

This function adds a single channel sample data block to the selected file(s).

BlackBody ([<File>:BlockID], {...});

7.7.5 Convert

Converts spectra.

This functions modifies the selected spectrum and changes the data block type
accordingly.

Convert ([<File>:BlockID], {...});

Parameter Value Description

BME 1 Rubber Band correction

2 Scattering correction

BPO 10 ... 200 number of baseline points

BCO 0 include CO2 bands

1 exclude CO2 bands

Parameter Value Description

QTE pos. number temperature of the Black Body radiator

QPM 0 energy

1 photons

Parameter Value Description

CSD 1 AB, TR, Refl

2 KM → Refl

3 AB, TR → ATR

4 ATR → AB

OPUS Manipulation Functions

Bruker Optik GmbH OEM DLL 7–11

7.7.6 Cut

Cuts out a frequency range of a spectrum file.

This functions modifies the selected spectrum file.

Cut ([<File>:BlockID], {...});

7.7.7 Deconvolution

Performs a Fourier self deconvolution.

This functions modifies the selected spectrum.

Deconvolution ([<File>:BlockID], {...});

7.7.8 Derivative

Calculates the derivative of a spectrum.

This functions appends a new data block, containing the derivative of the
spectrum, to the original data.

5 Refl → lgRefl

6 lgRefl → Refl

7 ScSm → Raman

8 Raman → ScSm

Parameter Value Description

CFX number X-start frequency

CLX number X-end frequency

Parameter Value Description

DSP peak form

LO Lorentzian

GA Gaussian

DEF pos. number deconvolution factor

DNR pos. number noise reduction factor

DES number X-start frequency

DEE number X-end frequency

DWR 0 frequency limits

1 file limits

OPUS Command Reference

7–12 OEM DLL Bruker Optik GmbH

Derivative ([<File>:BlockID], {...});

7.7.9 Extrapolation

Extrapolates a spectrum.

This functions modifies the selected spectrum.

Extrapolation ([<File>:BlockID], {...});

7.7.10 FFT

Performs a Fast Fourier transformation..

This command performs a fast Fourier transformation of an interferogram. The
result is a single channel spectrum data block, which will be added to the file.

FFT ([<File>:BlockID], {...});

Parameter Value Description

QSP 5, 9, 13,
17, 21, 25 number of smoothing points

QOD 1...5 order of derivative

Parameter Value Function

QX0 number extrapolate to zero

QX1 number extrapolate to infinity

QX2 number lower frequency limit

QX3 number upper frequency limit

QX4 number new end frequency

Parameter Value Description

FTS number start frequency of the spectrum

FTE number end frequency of the spectrum

FZF pos. number Zerofilling factor

FTR pos. number resolution

FHR pos. number phase resolution

FBW bit code used to indicate forward/backward or
even/odd

1 forward interferogram

OPUS Manipulation Functions

Bruker Optik GmbH OEM DLL 7–13

2 backward interferogram

8 even separation

16 odd separation

FTA apodization function

BX Boxcar

TR Triangular

4P Four Point

HG Happ-Genzel

B3 Blackman-Harris 3-term

B4 Blackman-Harris 4-term

NBW Norton-Beer, weak

NBM Norton-Beer, medium

NBS Norton-Beer, strong

FLR pos. number limit resolution

FHZ phase correction

ML Mertz

SM Signed Mertz

PW Power spectrum

MS Mertz stored phase

NO No – save complex data

FZF pos. number Zerofilling factor

FNL 0 no nonlinearity correction

1 nonlinearity correction

FNC pos. number nonlinearity correction – detector cutoff

FNE pos. number nonlinearity correction – mod. efficiency

FSM ZPD search mode

AL largest absolute value

MN minimum

MX maximum

MI mid position between min and max

NO use stored value

MA manual input

FPP pos. number peak position

FSR pos. number search range

FSY symmetry for search range

0 symmetrical

1 antisymmetrical

OPUS Command Reference

7–14 OEM DLL Bruker Optik GmbH

7.7.11 FreqCalibration

Performs a frequency calibration.

This functions modifies the selected spectrum.

FreqCalibration ([<File>:BlockID], {...});

7.7.12 InverseFT

Performs an inverse Fourier transformation.

This command performs an inverse Fourier transformation of a spectrum. The
result is a single channel spectrum data block, which will be added to the file.

InverseFT ([<File>:BlockID], {...});

2 automatic

FTT to do list — bit list for result data blocks

1 absorbance

2 interferogram

4 single channel

8 power spectrum

16 phase spectrum

64 single channel (real)

128 single channel (imaginary)

Parameter Value Description

QF0 NO do not restore original values

YES restore original values

MWC number factor

AWC number offset

Parameter Value Description

RSY symmetry

0 symmetric

1 Antisymmetric

RXS number X-start frequency

RXE number X-end frequency

RWR 0 frequency limits used

1 file limits used

OPUS Manipulation Functions

Bruker Optik GmbH OEM DLL 7–15

7.7.13 KramersKronig

Performs a Kramers Kronig transformation.

This command performs a Kramers-Kronig transformation of a reflectance
spectrum. The real and imaginary part of an absorbance-like spectrum will be
calculated. The result is a single channel spectrum data block which will be
added to the file.

KramersKronig ([<File>:BlockID], {...});

7.7.14 MakeCompatible

Makes spectra compatible.

This functions interpolates the selected spectrum to the frequency limits and
point raster of a reference spectrum.

This functions modifies the selected spectrum and changes the data block type
accordingly. The reference spectrum remains unchanged.

MakeCompatible ([<File1>:BlockID1], ([<File2>:BlockID2], {...});

<File1>reference file.

<File2> file to be interpolated.

Parameter Value Description

KKR desired result

0 refractive index (complex)

1 absorbance

2 dielectric function (complex)

3 phase

KKS number X-start frequency

KKE number X-end frequency

KWR 0 use specified frequency limits

1 use file limits

Parameter Value Description

CME interpolation method

2 interpolation

3 reduce resolution

OPUS Command Reference

7–16 OEM DLL Bruker Optik GmbH

7.7.15 Merge

This function has not been implemented yet.

Merges spectra.

Merge ([<File>:BlockID], {...});

7.7.16 Normalize

Normalizes a spectrum.

This functions modifies the selected spectrum.

Normalize ([<File>:BlockID], {...});

7.7.17 PostFTZerofill

Performs a post Zerofilling of a spectrum.

This functions modifies the selected spectrum.

PostFTZerofill ([<File>:BlockID], {...});

Parameter Value Description

NME 1 min-max normalization

2 vector normalization

3 offset correction

NWR 0 use specified frequency limits

1 use file limits

NFX number X-start frequency

NLX number X-end frequency

Parameter Value Description

PZF pos. number Zerofilling Factor

PZS number X-start frequency

PZE number X-end frequency

PWR frequency limits

0 use specified frequency limits

1 use file limits

OPUS Manipulation Functions

Bruker Optik GmbH OEM DLL 7–17

7.7.18 RamanCorrection

Performs a Raman correction.

This functions modifies the selected spectrum.

RamanCorrection ([<File>:BlockID], {...});

7.7.19 Smooth

Smoothes a spectrum.

This functions modifies the selected spectrum.

Smooth ([<File>:BlockID], {...});

7.7.20 StraightLine

Generates a straight line.

This functions modifies the selected spectrum.

Parameter Value Description

QC0 background correction

0 do not perform correction

1 perform correction

QC1 scatter correction

0 do not perform correction

1 perform correction

QC2 restore original data

0 do not perform correction

1 perform correction

QC3 Text path for white light source spectrum

QC4 Text name of white light source spectrum

QC5 pos. number reference temperature

Parameter Value Description

QSP 5, 9, 13,
17, 21, 25 number of smoothing points

OPUS Command Reference

7–18 OEM DLL Bruker Optik GmbH

StraightLine ([<File>:BlockID], {...});

7.7.21 Subtract

Subtracts one or more spectra from another spectrum.

The spectrum from which the others are subtracted is modified. The spectrum/
spectra which are subtracted stay unchanged.

Subtract ([<File A>:BlockIDA], ([<File B>:BlockIDB], {...});

<File A>file to be subtracted from, this file is modified.

<File B> file(s) which are subtracted from <FileA>.

7.8 OPUS Evaluation Functions

7.8.1 Integrate

Integrates a spectrum.

This function adds an integration report to the file.

Integrate ([<File>:BlockID], {...});

Parameter Value Description

GFX number X-start frequency

GLX number X-end frequency

Parameter Value Description

SUB subtraction mode

1 interactive

3 autosubtraction

4 use whole range

SUN number of spectra

SX1 X-start frequency

SX2 X-end frequency

Parameter Value Description

LPT text path for integration method

LFN text file name of the integration method

LRM report mode

OPUS Evaluation Functions

Bruker Optik GmbH OEM DLL 7–19

7.8.2 PeakPick

Creates a peak table.

This function adds a peak table data block to the file.

PeakPick ([<File>:BlockID], {...});

0 overwrite old integration report

1 merge integration reports

2 append integration report

Parameter Value Description

PSM peak mode

1 standard peak pick

2 2. derivative

NSP 5, 9, 13,
 17, 21, 25 number of points used for 2. derivative

WHR frequency limits

0 use specified frequency limits

1 use file limits

LXP number start frequency

FXP number end frequency

PPM peak definition

1 autodetect (min or max)

2 find maximum

3 find minimum

PTR pos. number find peaks > value (absolute)

QP0 decimals

YES digits after decimal, user-defined

NO digits after decimal, not defined by user

QP3 pos. integer digits after decimal

QP4 peak limits (%)

YES use peak limits

NO ignore peak limits

QP5 pos. integer find peaks < value (%)

QP6 upper absolute peak limit

YES use upper absolute peak limit

NO ignore upper absolute peak limit

QP7 pos. integer find peaks < value (absolute)

OPUS Command Reference

7–20 OEM DLL Bruker Optik GmbH

7.8.3 SignalToNoise

Calculates the Signal-to-Noise ratio.

This function adds parameters to the data parameter block of the selected
spectrum.

SignalToNoise ([<File>:BlockID], {...});

7.9 OPUS File Functions

7.9.1 ChangeDataBlockType

This function has not been implemented yet.

Change the data block type.

This functions does not modify the specified data block, only the block ID is
changed.

ChangeDataBlockType ([<File>:BlockID], {...});

7.9.2 CopyDataBlock

This function has not been implemented yet.

Copies a data block from one file to another.

This function adds the specified data block to the selected file in file list B.

QP8 lower absolute peak limit

YES use lower absolute peak limit

NO ignore lower absolute peak limit

Parameter Value Description

NF1 number start frequency

NF2 number end frequency

SN1 number S/N (RMS)

SN2 number S/N (peak to peak)

SN3 number maximum ordinate in S/N region

SN4 number minimum ordinate in S/N region

SNF flags

OPUS File Functions

Bruker Optik GmbH OEM DLL 7–21

CopyDataBlock ([<File A>:BlockID], ([<File B>], {...});

<file A>source file.

blockIDname of the data block to copy.

<file B>destination file.

7.9.3 DeleteDataBlock

Deletes the specified data block.

The specified block is removed from the file.

DeleteDataBlock ([<File>:BlockID], {...});

7.9.4 Restore

Restores original File.

This function restores the original file and discards all changes made so far. All
changes are lost if the results had not been saved before.

Restore([<File>:BlockID], {});

The function does not require any parameters.

7.9.5 Save, SaveAs

Saves a spectrum file.

This function stores the eventually modified file to disk.

Save ([<File>:BlockID], {...});

Save As ([<File>:BlockID], {...});

Parameter Value Description

OEX overwrite mode

0 increment file name

1 overwrite file

SAN file name

DAP target directory

COF bit combination for save mode

2 save all data blocks

4 move file

OPUS Command Reference

7–22 OEM DLL Bruker Optik GmbH

7.9.6 SendFile

Sends a file via e-mail.

This function does not modify the specified file.

SendFile ([<File>:BlockID], {...});

7.9.7 Unload

Removes a spectrum from Browser.

This function removes the specified file from the OPUS file list. The file is no
longer accessible from the macro.

Unload ([<File>:BlockID], {...});

The function does not require any parameters.

16 remove copies

32 save as JCAMP.dx file

64 save as x,y table

128 replace original data

256 save as Galactics GRAMS file

512 unload file after saving it

1024 save as Pirouette file

The following parameters will only be used when saving a file as an x,y table.

DPA pos. number number of decimals, abscissa

DPO pos. number number of decimals, ordinate

SEP character separator

YON Y-values

1 Y-Values only

0 X and Y-Values

ADP data points

1 use all data points

0 do not use all data points

Parameter Value Description

COF data blocks

0 send only specified block

2 send all blocks

OPUS Measurement Functions

Bruker Optik GmbH OEM DLL 7–23

7.10 OPUS Measurement Functions

We strongly recommend to set the measurement parameters for a macro using
an experiment file. Most of the parameter are linked and checked for
consistency before starting an acquisition. Therefore, an inconsistent or wrong
parameter set will most likely not be able to start an acquisition, and can be
recognized easily. Only a few of the parameters listed below can be set without
any problems either manually or by using variables.

7.10.1 Measurement Commands

The measurement commands always use the same parameters. You should only
use the parameters listed here.

1) Measure Reference: MeasureReference ({...}); acquires a background
spectrum.

2) Measure Sample: <File> = MeasureSample ({...}); acquires a sample
spectrum.

3) Measure Repeated: <File> = MeasureRepeated ({...}); acquires a set of
sample spectra.

4) Measure Rapid TRS: <File> = MeasureRapidTRS ({...}); performs a
rapid scan acquisition.

5) Measure Step Scan Trans: <File> = MeasureStepScanTrans ({...});
performs a Step Scan acquisition, using a transient recorder.

7.10.2 SendCommand

Sends an optics command to the optics bench.

This function does not need an input spectrum.

SendFile (0, {...});

Parameter Value Description

SNM text sample name

SFM text sample preparation

CNM text operator

XPM text experiment file name

XPP text path for experiment file

RES pos. number resolution

NSS pos. number number of scans

Parameter Value Description

UNI text text to be sent

OPUS Command Reference

7–24 OEM DLL Bruker Optik GmbH

7.10.3 SaveReference

Saves a reference spectrum from the AQP to disk.

This function creates a new file.

SaveReference (0, {...});

The function does not require any parameters.

7.10.4 LoadReference

Loads a reference spectrum from disk into the AQP.

This function does not modify the spectrum.

LoadReference ([<File>:ScRf], {...});

The function does not require any parameters.

7.11 OPUS Library Functions

7.11.1 LibrarySearchInfo

Searches for information in a spectrum library.

This function performs a query for information within a spectrum library. The
query text must be supplied in a query file (extension .INL); use the OPUS-NT
Information Search dialog to create and save a query file.

[<File1>:BlockID] = LibrarySearchInfo (0, {...});

Standard search.

<File 1>Contains the search result.

[<File1>:BlockID] = LibrarySearchInfo ([<File2>:BlockID], {...});

Query using an existsing search report.

<File 1>Contains the search result.

<File 2> Contains the search report.

OPUS Library Functions

Bruker Optik GmbH OEM DLL 7–25

7.11.2 LibrarySearchPeak

Searches for peaks in a spectrum library.

This function performs a query for peaks within a spectrum library. The query
R must be supplied in a query file (extension .PKL); use the OPUS-NT Peak
Search dialog to create and save such a query file.

[<File1>:BlockID] = LibrarySearchPeak (0, {...});

Standard search.

<File 1>Contains the search result.

[<File1>:BlockID] = LibrarySearchPeak ([<File2>:BlockID], {...});

Query using a search report.

<File 1>Contains the search result.

<File 2> Contains the search report.

Parameter Value Description Remarks

SIH NUMERIC maximum number
of hits must be > 0

SIN STRING name of the infor-
mation query file

file name including exten-
sion (.INL)

SIP STRING path of the query
file path without teminating “\”

LB1 STRING list of library files
to be searched

names of the library files.
They must be stated includ-
ing drive and path but with-
out extension. Separate
multiple file names with
“@”.

Parameter Value Description Remarks

SPQ NUMERIC minimum Hit qual-
ity

Range between 1 and 1000
Will only be used in combi-
nation with the Calculate
Hit Quality algorithm.

SPH NUMERIC maximum Hit num-
ber must be > 0

SPA NUMERIC search algorithm

OPUS Command Reference

7–26 OEM DLL Bruker Optik GmbH

7.11.3 LibrarySearchStructure

Searches for chemical structures in a spectrum library.

This function performs a query for chemical structures within a library file. The
query must be supplied in a structure data block.

LibrarySendStructure([<File1>:BlockID], 0, {...});

Standard search.

<File 1>Contains the query structure.

LibrarySearchStructure ([<File1>:BlockID], [<File1>:BlockID], {...});

Query using an existing search report. The result will be appended to the file
containing the structure block.

<File 1>Contains the query structure.

<File 2> Contains the search report.

512 hit if one peak
matches

1024 hit if all peaks
match

2048 calculate hit quality

4096 count matching
peaks

PNP STRING name of the peak
query file

file name including exten-
sion (.PKL)

PPP STRING path of the peak
query file path without teminating “\”

LB1 STRING list of library files
to be searched

names of the library files.
They must be stated includ-
ing drive and path but with-
out extension. Separate
multiple file names with
“@”.

Parameter Value Description Remarks

STH NUMERIC maximum number
of Hits must be > 0

LAL NUMERIC search algorithm

8192 match exact

OPUS Library Functions

Bruker Optik GmbH OEM DLL 7–27

7.11.4 LibrarySearchSpectrum

Searches for spectra in a spectrum library.

This function performs a query for peaks within a spectrum library. The query
spectrum must be absorbance-like.

LibrarySearchSpectrum ([<File1>:BlockID], 0, {...});

Standard search.

<File 1>The query spectrum.

LibrarySearchSpectrum ([<File1>:BlockID], [<File2>:BlockID], {...});

Query using a search report.

<File 1>The query spectrum.

<File 2> Contains the search report.

12288 match embedded

LB1 STRING list of library files
to be searched

names of the library files.
They must be stated includ-
ing drive and path but with-
out extension. Separate
multiple file names with
“@”.

Parameter Value Description Remarks

LSS NUMERIC sensitivity

Range between 1 and 20
Will only be used in combi-
nation with the Standard
algorithm.

SSQ NUMERIC minimum Hit qual-
ity Range between 1 and 1000

SSH NUMERIC maximum number
of Hits must be > 0

SS1 NUMERIC search algorithm

When using spectrum corre-
lation algorithms, the value
will always be the sum of
three options.

1 standard

2 standard, use exist-
ing peak table

4 spectrum correla-
tion

OPUS Command Reference

7–28 OEM DLL Bruker Optik GmbH

7.11.5 LibraryInitialize

Creates a new, empty library.

A method file (extension .MTD) and a text file (extension .TXD) is needed to
create a library file.

LibraryInitialize ({...});

The function does not require any parameters.

+16 no derivative
one of the three derivatiza-
tion types must be added to
the base value.

+32 first derivative

+64 second derivative

+128 vector normaliza-
tion

one of the two normalization
types must be added to the
base value.

+256 min-max normal-
ization

LB1 STRING list of library files
to be searched

names of the library files.
They must be stated includ-
ing drive and path but with-
out extension. Separate
multiple file names with
“@”.

Parameter Value Description Remarks

LPT STRING path of the text defi-
nition file path without teminating “\”

LBT STRING name of the text
definition file file name without extension

MTP STRING path of the method
file path without teminating “\”

LMT STRING name of the method
file file name without extension

LBP STRING directory of the new
library file path without teminating “\”

LBN STRING name of the library
file file name without extension

LID STRING library description maximum 79 characters

LCP STRING copyright maximum 79 characters

OPUS Library Functions

Bruker Optik GmbH OEM DLL 7–29

7.11.6 LibraryStore

Stores a new entry, the library description, and the definition of information
saved in a library file.

LibraryStore (0, [<File>:BlockID], {...});

The function does not require an input file list.

7.11.7 LibraryEdit

This function loads and deletes entries of a library. Furthermore, the
description of the library as well as the description of the stored information can
als be edited.

[<File>:BlockID] = LibraryEdit (0, {...});

Syntax to load a spectrum of a library entry.

LibraryEdit (0, {...});

Syntax for any other option

.

Parameter Value Description Remarks

LSM NUMERIC storage mode

1 new entry

3 replace entry

5 replace info

7 insert/replace struc-
ture

LBP STRING directory of the
library file path without teminating “\”

LBN STRING name of the library
file file name without extension

LBS NUMERIC entry number for all storage modes except
“New Entry”.

Parameter Value Description Remarks

LMO NUMERIC edit mode

2 load entry

5 delete entry

13 change information
set

OPUS Command Reference

7–30 OEM DLL Bruker Optik GmbH

7.11.8 InfoInput

Allows information input.

This function adds an information block to the selected file. Depending on the
mode, either the complete info block is replaced, only selected information of
an existing info block is replaced, or a new file with an info block will be
created.

InfoInput ([<File>:BlockID], {...});

Syntax if a block should be replaced or extended.

[<File>:BlockID] = InfoInput ({...});

Syntax if a new file should be created.

14 change description

LBS NUMERIC entry number
only required for the “Load
Entry” and “Delete Entry”
mode.

LBP STRING directory of the
library file path without teminating “\”

LBN STRING name of the library
file file name without extension

LID STRING
new information
definintion file or
library description

only required for the
“Chande Info Definition”
and “Chande Description”
mode. Contains the com-
plete path and name of the
new information definition
file (extension .TXD) or the
description, depending on
the mode.

Parameter Value Description

IRM STRING information input
mode

a

O
the complete info
block will be over-
written.

R
the complete info
block will be
replaced.

Miscellaneous OPUS Functions

Bruker Optik GmbH OEM DLL 7–31

7.12 Miscellaneous OPUS Functions

7.12.1 ExternalProgram

Starts an external program.

This function launches an external program, forwards parameters and supplies
the means of communication with the external program. DDE connections as
well as Named Pipes are supported.

N generate new info
file

INP STRING path of the info defi-
nition file

Required for the modes “O”
and “N”.

INM STRING name of the info def-
inition file

Required for the modes “O”
and “N”.

I01 STRING information of line 1 b

I02 STRING information of line 2

...

I99 STRING information of line
99

T01 STRING description of line 1

T02 STRING description of line 2

...

T99 STRING description of line
99

a. If stated, make sure to consider the following points:
The parameter IRM is not allowed in the parameter list.
Null strings have to be assigned to the parameters INM and INP

(e.g. INM = ’’)
The paramters Txx have to be specified consecutively, starting with T00. For

example, in case of 4 lines, the parameters T00, T01, T02, T03, T04 must
be stated.

The parameters Ixx responsible for the line content, like all other options,
don’t need to be specified consecutively.

b. Specify the text to be entered in the info block using the parameters Ixx. xx
represents the line numbers in the info block. You only have to state parameters for
the lines in which you wish to enter text. The total number of lines is defined in the
info definition file.

OPUS Command Reference

7–32 OEM DLL Bruker Optik GmbH

ExternalProgram ([<File>:BlockID], {...});

Parameter Value Description

XPF start as OPUS task

0 OPUS starts the program, then breaks off all
communictation with the external program

1 program is not detached

XST type of program start and connection type

0 start the program; connection via a pipe

1 don’t start the program; connection via the
server pipe

2 start the program; open a DDE connection

3 don’t start the program; connection via the
server pipe

XPR Text name of the program to be launched, includ-
ing path

XPA Text parameteres to be exchanged

XWI start 16bit program in its own VDM

0 use common VDM

1 extra VDM

XWS window size at start

0 normal

1 maximized

2 minimized

3 hidden

XCW wait for program termination

0 only start program

1 wait for result/end

XSB start in background mode – not supported by
Windows NT. Can be replaced by XWS

XEM OS/2 spezific – no longer supported

XDM OS/2 spezific – no longer supported

XVP OS/2 spezific – no longer supported

XPM <C/S> OS/2 spezific – no longer supported

DDE transaction type

Bit 0 gelöscht don’t send command

1 poke

Miscellaneous OPUS Functions

Bruker Optik GmbH OEM DLL 7–33

7.12.2 ParameterEditor

Changes the sample parameters.

This function changes the following parameters:

• sample name
• sample form
• user name
• sample number

Note that the statement of all values is required when executing this function.
In addition, the axes labels and scaling factors used for the axes can be entered.

ParameterEditor ([<File>:BlockID], {...});

3 execute

5 request

DDS Text DDE server name

DDT Text DDE topic

DDI Text DDE item

DDD Text text-coded binary data

Parameter Value Description

CNM Text user name

SNM Text sample nname

SFM Text sample form

RSN Zahl sample number

XTX Text X-axis label

YTX Text Y-axis label

ZTX Text Z-axis label

XAF Number X-axis scaling factor

YAF Number Y-axis scaling factor

ZAF Number Z-axis scaling factor

OPUS Command Reference

7–34 OEM DLL Bruker Optik GmbH

7.12.3 Plot

Plots spectra.

This function does not change the spectrum.

Plot ([<File>:BlockID], {...});;

PPA starts with FRM=n and defines how many frame parameters follow. For
each frame the following parameters (separated by commas) are necessary:

Parameter Value Description

PDV output device

Printer printer

Clipboard clipboard

SCP Text path of the template used for plotting

SCN Text name of the template used for plotting

PUN devices; currently not evaluated

POP Text output path; currently not evaluated

POF Text output file; currently not evaluated

PDH window handle; currently not evaluated

PL2 Number number of peaks to be labeled

PPA Text Codes several parameters in a string that are used
for different frames

Parameter Value Description

NPL Number number of spectra in the current frame

XSP Number X start frequency

XEP Number X end frequency

YMN Number lowest value of the Y axis

YMX Number highest value of the Y axis

ASE YES/NO AutoScale the spectrum frame

CWN YES/NO use compressed wave numbers

COL Numbers colors of each curve, separated by commas

Miscellaneous OPUS Functions

Bruker Optik GmbH OEM DLL 7–35

7.12.4 VBScript

Starts a VisualBasic script

This function loads and then runs a VisualBasic script. Parameters and data
blocks can be forwarded to the script

VBScript ([<File>:BlockID], {...});

Parameter Value Description

VBS Text name of the script, including path

VBP Text parameters to be forwarded to the script

VBW wait for termination

0 immediate return after starting the script

1 wait for result/end

VBH start in background mode

0 start in foreground – script will be displayed

1 start in background – script will not be dis-
played

OPUS Command Reference

7–36 OEM DLL Bruker Optik GmbH

Overview of Available Functions

Bruker Optik GmbH OEM DLL 8–1

8 Client/Server Reference
The Client/Server Interpreter is the module of OPUS responsible for processing
commands received through the Pipe-, DDE- or Scripting interface. Therefore,
the list of commands is the same for all three interfaces.

The following chapters mainly address users who intend to write their own
programs and link them to OPUS or OPUS macros. This is achieved with the
OPUS command External Program, which was described earlier. In the
following we expect the user to be familiar with this command and its options.

A part of these commands was already available under OPUS OS/2 in form of
the Client/Server function. Hence, in the following the commands are divided
in old and new ones.

8.1 Overview of Available Functions

Currently, you can use a client program to:

• read data from OPUS spectrum files and 3D files; you can either read
the whole frequency region or select a part of interest from the data.

• write data to OPUS spectrum files and 3D files; you can either write
the whole frequency region or select a part of interest from the data.

• load and unload OPUS files.
• read file information from the Client/Server file list.
• read OPUS parameters from an OPUS file.
• save OPUS parameters to an OPUS file.
• read data from report blocks.
• start OPUS macros.
• exchange parameters with an OPUS macro.

In addition, all functions of the command line, i.e. all OPUS processing
functions are supported, according to the syntax described earlier.

8.2 Commands and Command Syntax

In the following you find a list containing all Client/Server commands. The
description of all commands is structured in the same manner:

Syntax:

The name of the command and the syntax that has to be applied. Mandatory
exchange parameters are indicated with „< >“, optional parameters are enclosed
in square brackets „[]“.

Client/Server Reference

8–2 OEM DLL Bruker Optik GmbH

Description:

A description of the action performed by the command.

Return Value:

A list of the possible return values.

Return Value 2:

Return Value 3:

Some commands return additional text after confirming the execution with OK;
in this case they must be read.

Errors:

A list of possible error messages.

Comments:

Notes and further comments about the command.

8.3 Old C/S Commands

These commands have been available already in OPUS-OS/2.

8.3.1 Overview

The following commands are still used by OPUS-NT:

TIMEOUT sets the maximum wait time
CLOSE_PIPE closes pipe
OVERWRITE activates overwrite mode
PRESERVE deactivates overwrite mode
COUNT_ENTRIES counts entries of the file input list
READ_FROM_ENTRY sets the entry number and data block
WRITE_TO_ENTRY sets the entry number and data block for writing
READ_FROM_FILE selects file for reading
WRITE_TO_FILE selects file for writing
READ_FROM_BLOCK specifies the data block for reading
WRITE_TO_BLOCK specifies the data block for writing
ASCII sets data point mode to text
BINARY sets data point mode to binary
DATA_VALUES sets data point mode to frequencies
DATA_POINTS sets data point mode to data points
READ_HEADER reads spectrum header
READ_DATA reads spectral data
WRITE_HEADER writes spectrum header

Old C/S Commands

Bruker Optik GmbH OEM DLL 8–3

WRITE_DATA writes spectral data
COPY_DATA copies spectrum block
LOAD_FILE loads a file
UNLOAD_FILE unloads a file
START_MACRO runs a macro
FILE_PARAMETERS sets parameter mode to spectrum parameters
OPUS_PARAMETERS sets parameter mode to OPUS parameters
READ_PARAMETER reads parameters

8.3.2 CLOSE_PIPE

Syntax:

“CLOSE_PIPE”

Description:

Closes the pipe connection.

Return Value:

“OK”

Comment:

Although it is not strictly required, this command should be send if no further
communication with OPUS is necessary. The corresponding program pipe will
be closed by OPUS and the resources returned.

8.3.3 COUNT_ENTRIES

Syntax:

“COUNT_ENTRIES”

Description:

Returns the number of data blocks that have been selected in the Select File
dialog of the External Program function.

Return Value:

“OK”

Return Value 2:

<Number of data blocks>

Comment:

This command ensures that all files or data blocks selected in the Select File
dialog of the External Program function can be accessed.

Client/Server Reference

8–4 OEM DLL Bruker Optik GmbH

8.3.4 READ_FROM_ENTRY

Syntax:

“READ_FROM_ENTRY <Number>”

Description:

This command specifies the data block accessed by the READ_DATA
command.

Return Value:

“OK” or error message.

Error:

“Syntax: READ_FROM_ENTRY <Number>”

“Entry number out of range”

Return Value 2:

<Complete path of the OPUS file>

<File number>

<Data block name>

Comment:

The argument to this command is the number of an entry in the Client/Server
file list (between 1 and the number returned from the COUNT_ENTRIES
command), from which the client program intends to read. If no error occurs,
the complete file name (including drive and path), as well as the data block
name of the selected file in text format will be returned as the second return
value. The format of the data block name is identical to the one used in the
history function.

The file name returned by the command is hyphenated and followed by the
number of the copy (clonecount) for further use with the command line.

8.3.5 WRITE_TO_ENTRY

Syntax:

“WRITE_TO_ENTRY <Number>”

Description:

This command specifies the data block accessed by the WRITE_DATA
command.

Old C/S Commands

Bruker Optik GmbH OEM DLL 8–5

Return Value:

“OK” or error message.

Error:

“Syntax: WRITE_TO_ENTRY <Number>”

“Entry number out of range”

Return Value 2:

<Complete path of the OPUS file>

<File number>

<Data block name>

Comment:

The argument to this command is the number of an entry in the Client/Server
file list (between 1 and the number returned from the COUNT_ENTRIES
command). If no error occurs, the complete file name (including drive and
path), as well as the name of the data block in text format will be returned as the
second return value. The name of the data block is returned in the same format
used in the history function.

The file name returned by the command is hyphenated and followed by the
number of the copy (clonecount) for further use with the command line.

8.3.6 READ_FROM_FILE

Syntax:

“READ_FROM_FILE <Filename> or <File number>”

Description:

Specifies the OPUS file from which the client program intends to read. The
argument to this command is the file name which can be specified with or
without hyphens. Optionally, the clonecount can be stated. If the file was
already loaded in OPUS using this name (including the correct clonecount), this
copy will be used. Otherwise, the file will automatically be loaded. For reasons
of compatibility to OPUS-OS/2 the file can still be accessed via an internal file
number, but this number is no longer limited to the region between 1 to 699.

Return Value:

“OK” or error message.

Client/Server Reference

8–6 OEM DLL Bruker Optik GmbH

Error:

“Syntax: READ_FROM_FILE <File name> or <File number>”

“File not Found”

Return Value 2:

<Complete path of the OPUS file>

<File number>

Comment:

Specifies the OPUS file from which the client program intends to read. This
command is only able to select a file; the READ_FROM_BLOCK command
must subsequently be used to specify the data block in the file, from which to
read.

The error message „File not Found“ can have multiple causes. In general, it
indicates an error while accessing the file.

The file name returned by the command is hyphenated for further use in the
command line and is followed by the number of the copy (clonecount).

8.3.7 WRITE_TO_FILE

Syntax:

“WRITE_TO_FILE <File name> or <File number>”

Description:

Specifies the OPUS file to which the client program intends to write. The
argument to this command is the file name which can be specified with or
without hyphens. Optionally, the clonecount can be stated. If the file was
already loaded in OPUS using this name (including the correct clonecount), this
copy will be used. Otherwise, the file will automatically be loaded. For reasons
of compatibility to OPUS-OS/2 the file can still be accessed via an internal file
number, but this number is no longer limited to the region between 1 to 699.

Return Value:

“OK” or error message.

Error:

“Syntax: WRITE_TO_FILE <File name> or <File number>”

“File not Found”

Old C/S Commands

Bruker Optik GmbH OEM DLL 8–7

Return Value 2:

<Complete path of the OPUS file>

<File number>

Comment:

Specifies the OPUS file to which the client program intends to write. This
command is only able to select a file; the WRITE_TO_BLOCK command must
subsequently be used to specify the data block in the file to which to write.

The error message „File not Found“ can have multiple causes. In general, it
indicates an error while accessing the file.

The file name returned by the command is hyphenated for further use in the
command line and is followed by the number of the copy (Clonecount).

8.3.8 READ_FROM_BLOCK

Syntax:

“READ_FROM_BLOCK <Block name>”

Description:

Specifies the data block from which the client program intends to read. The
command always refers to the file that was last specified with the
READ_FROM_ENTRY or the READ_FROM_FILE command.

Return Value:

“OK” or error message.

Error:

“Syntax: READ_FROM_BLOCK <Block name>”

“No Filename or Filenumber defined”

“Unknown blocktype”

“Block not found”

Comment:

The argument to the command is the block type which is also used in reports i.e.
“AB” for an absorption spectrum, “TR/Multiple” for a transmission block of a
3D file. The command will only be accepted if it was preceded by either the
READ_FROM_ENTRY or the READ_FROM_FILE command.

Client/Server Reference

8–8 OEM DLL Bruker Optik GmbH

8.3.9 WRITE_TO_BLOCK

Syntax:

“WRITE_TO_BLOCK <Block name>”

Description:

Specifies the data block from which the client program intends to write. The
command always refers to the file that was last specified with the
WRITE_TO_ENTRY or the WRITE_TO_FILE command.

Return Value:

“OK” or error message.

Error:

“Syntax: WRITE_TO_BLOCK <Block name>”

“No Filename or Filenumber defined”

“Unknown blocktype”

“Block not found”

Comment:

The argument to the command is the block type which is also used in reports,
i.e. “AB” for an absorption spectrum, “TR/Multiple” for a transmission block
of a 3D file. The command will only be accepted if it was preceded by either
the WRITE_TO_ENTRY or the WRITE_TO_FILE command.

8.3.10 ASCII

Syntax:

“ASCII”

Description:

Sets the transfer mode used to transfer data points to ASCII.

Return Value:

“OK”

Comment:

If this mode is chosen (default mode) all data points will be transferred as
ASCII text. Each data point is followed by an End of Line sequence.

Old C/S Commands

Bruker Optik GmbH OEM DLL 8–9

8.3.11 BINARY
Syntax:

“BINARY”

Description:

Sets the transfer mode used to transfer data points to BINARY.

Return Value:

“OK”

Comment:

If this mode is chosen, all data points will be transferred as 4 byte IEEE
floating-point number (REAL*4 in FORTRAN, FLOAT in C). In this mode,
the data points will not be terminated. Therefore, the number of bytes
transferred is N*4, N being the total number of transferred data points. This
mode is faster than the ASCII mode.

8.3.12 DATA_VALUES
Syntax:

“DATA_VALUES”

Description:

The parameters of the READ_HEADER, READ_DATA and COPY_DATA
will be interpreted as frequency values.

Return Value:

“OK”

8.3.13 DATA_POINTS
Syntax:

“DATA_POINTS”

Description:

The parameters of the READ_HEADER, READ_DATA and COPY_DATA
will be interpreted as data points.

Return Value:

“OK”

Comment:

The data point numbering starts with ,,1”. Floating-point numbers are always
rounded to the next lower integer (e.g. 14.965 will be rounded to 14).

Client/Server Reference

8–10 OEM DLL Bruker Optik GmbH

8.3.14 READ_HEADER

Syntax:

“READ_HEADER [<X1>[-<X2>] [<Z1>[-<Z2>]]”

Description:

Reads the header of a spectrum block and returns the frequency range of the
spectrum. Several options are available.

Return Value:

“OK” or error message.

Error:

“No Filename or Filenumber defined”

“No Blocktype defined”

“Error Reading File”

“Not implemented”

Return Value 2:

In case of regular spectrum blocks:

<Number of data points (NX = XL - XF + l) in region X>

<Frequency of the first data point in region X>

<Frequency of the last data point in region X>

Return Value 2:

In case of 3D spectrum blocks:

<Number of data points (NX = XL - XF + I) in region X>

<Frequency/number of the first data point in region X>

<Frequency/number of the last data point in region X>

<Number of spectra (NZ = ZL - ZF + 1) in region Z>

<Value (e.g. time) of the first spectrum in region Z>

<Value (e.g. time) of the last spectrum in region Z>

Note: The output will always be returned as ASCII text, separated by an End of
Line sequence, regardless of the selected data transfer mode.

Old C/S Commands

Bruker Optik GmbH OEM DLL 8–11

Comment:

Up to four parameters can be forwarded as command arguments.

<X1>, <X2> define the frequency region of the spectrum block. If <X2> is not
explicitly stated, only one data point in the vicinity of <X1> will be returned. If
no parameters are specified or if <X1> was set to ,,* ”, all data stored in the
spectrum block will be returned.

<Z1>, <Z2> define the region of the Z axis for which data will be returned (only
for 3D files). If <Z2> is not specified, only data in the vicinity of <Z1> will be
returned. If no parameters are specified or if <Z1> was set to ,,*”, all data
stored in the spectrum block will be returned. In the case of regular spectrum
blocks, the parameters <Z1> and <Z2> will be ignored and do not cause an
error message in case they have been stated.

All four parameters can either be entered as integer or as floating-point number
and will be interpreted either as frequencies or as data points, depending on the
settings (see the DATA_VALUES and DATA_POINTS commands).

8.3.15 READ_DATA

Syntax:

“READ_DATA [<X1>[<X2>]] [<Z1>[-Z2]]”

Description:

Reads the header and data points of a spectrum block within the limits
indicated. The parameters of the command are similar to the parameters of the
READ_HEADER command.

Return Value:

“OK” or error message.

Error:

“No Filename or Filenumber defined”

“No Blocktype defined”

“Error Reading File”

“Not implemented”

Return Value 2:

In case of regular spectrum blocks:

Client/Server Reference

8–12 OEM DLL Bruker Optik GmbH

<Number of data points (NX = XL - XF + l) in region X>

<Frequency of the first data point in region X>

<Frequency of the last data point in region X>

<Scaling factor for Y values>

<Y(XF)>, <Y(XF + 1)>, <Y(XF + 2)> ...<Y(XL)>

“OK” or “Error Reading File”

Return Value 2:

In case of 3D spectrum blocks:

<Number of data points (NX = XL - XF + 1) in region X>

<Frequency/number of the first data point (XF) in region X>

<Frequency/number of the last data point (XL) in region X>

<Number of spectra (NZ = ZL - ZF + 1) in region Z>

<Value (e.g. time) of the first spectrum in region Z>

<Value (e.g. time) of the last spectrum in region Z>

<Scaling factor for Y values> for Z = ZF

<Y(XF)>, <Y(XF + 1)>, ... <Y(XL)> for Z = ZF

<Scaling factor for Y values> for Z = ZF+1

<Y(XF)>, <Y(XF + 1)>, ... <Y(XL)> for Z = ZF + 1

<Scaling factor for Y values> for Z = ZF + 2

<Y(XF)>, <Y(XF + 1)>, ... <Y(XL)> for Z = ZF + 2

...

<Scaling factor for Y values> for Z = ZL

<Y(XF)>, <Y(XF + 1)>, ... <Y(XL)> for Z = ZL

“OK1” or “Error Reading File”

Comment:

The header values will always be returned as ASCII text, separated by an End of
Line sequence, regardless of the selected data transfer mode. The data points
will be returned either as ASCII text, separated by an End of Line sequence, or
as floating-point numbers without any separator, depending on the selected data
transfer mode. Either ,,OK” or the error message “Error Reading File” will be
appended after the data points.

Old C/S Commands

Bruker Optik GmbH OEM DLL 8–13

8.3.16 WRITE_HEADER

Syntax:

“WRITE_HEADER”

Description:

Writes a (new) header for a data block. After the command, the following para-
meters must be send as ASCII text:

Return Value:

In case of regular spectrum blocks:

<Number of data points (NX = XL - XF + l) in region X>

<Frequency/number of the first data point in region X>

<Frequency/number of the last data point in region X>

In case of 3D spectrum blocks:

<Number of data points (NX = XL - XF + I) in region X>

<Frequency/number of the first data point in region X>

<Frequency/number of the last data point in region X>

<Number of spectra (NZ = ZL - ZF + 1) in region Z>

<Value (e.g. time) of the first spectrum in region Z>

<Value (e.g. time) of the last spectrum in region Z>

“OK” or error message.

Error:

“No Filename or Filenumber defined”

“No Blocktype defined”

“Not implemented”

Comment:

This command serves to edit existing data block headers. Especially, pay
attention to the number of data points (especially in Z direction): the number of
data points specified must match the actual number of data points stored in the
data block. Otherwise, a shift of the data will result.

Client/Server Reference

8–14 OEM DLL Bruker Optik GmbH

8.3.17 WRITE_DATA

Syntax:

“WRITE_DATA”

Description:

Writes the header and data points into a data block. After the command, the fol-
lowing parameters must be send:

In case of regular spectrum blocks:

<Number of data points (NX = XL - XF + l) in region X>

<Frequency/number of the first data point (XF) in region X>

<Frequency/number of the last data point (XL) in region X>

<Scaling factor for Y-Values> <Y(XF)>, <Y(XF + 1)>, <Y(XF + 2)>
...<Y(XL)>

In case of 3D spectrum blocks:

<Number of data points (NX = XL - XF + I) in region X>

<Frequency/number of the first data point (XF) in region X>

<Frequency/number of the last data point (XL) in region X>

<Number of spectra (NZ = ZL - ZF + 1) in region Z>

<Value (e.g. time) of the first spectrum in region Z>

<Value (e.g. time) of the last spectrum in region Z>

<Scaling factor for Y values> for Z = ZF <Y(XF)>, <Y(XF + I)>, <Y(XI,)> for
Z = ZF

<Scaling factor for Y values> for Z = ZF + 1

<Y(XF)>, <Y(XF + 1)>, ... <Y(XL)> for Z = ZF + 1

<Scaling factor for Y values> for Z = ZF + 2

<Y(XF)>, <Y(XF + 1)>, ... <Y(XL)> for Z = ZF + 2

...

<Scaling factor for Y values> for Z = ZL

<Y(XF)>, <Y(XF + I)>, ... <Y(XL)> for Z = ZL

Old C/S Commands

Bruker Optik GmbH OEM DLL 8–15

Return Value:

“OK” or error message.

Error:

“No Filename or Filenumber defined”

“No Blocktype defined”

“Not implemented”

“Error Accessing Data”

Return Value 2:

After the header and all data points have been read by OPUS, either “OK” or an
error message will be returned.

Comment:

The header values must always be sent as ASCII text, separated by an End of
Line sequence, regardless of the selected data transfer mode. The data points
must be returned either as ASCII text, separated by an End of Line sequence, or
as floating-point numbers without any separator, depending on the selected data
transfer mode.

8.3.18 COPY_DATA

Syntax:

“COPY_DATA [<X1>[-<X2>]] [<Z1>[-<Z2>]]”

Description:

Copies data points from a data block specified by one of the commands
READ_FROM_ENTRY or READ_FROM_FILE and READ_FROM_BLOCK
to a data block specified by either the WRITE_TO_ENTRY or
WRITE_TO_FILE and WRITE_TO_BLOCK command (for parameters see
READ_HEADER).

Return Value:

After receiving the command:

 “OK” or error message.

Return Value 2:

After processing the command:

“OK” or error message.

Client/Server Reference

8–16 OEM DLL Bruker Optik GmbH

Error:

“No Filename or Filenumber defined”

“No Blocktype defined”

“Not implemented”

“Error Reading File”

Comment:

The copy process take place within OPUS. Therefore, no data points are
transferred via a pipe.

8.3.19 LOAD_FILE

Syntax:

“LOAD_FILE <File name>”

Description:

Loads the indicated file into OPUS.

Return Value:

 “OK” or error message.

Error:

“Syntax: LOAD_FILE <File name>”

“Error reading file”

Return Value 2:

<Path and name of the file>

<File number>

Comment:

OPUS loads the file even if it has already been loaded before. In this case
another copy (clone) is generated.

The file name returned by the command is hyphenated for further use in the
command line and is followed by the number of the copy (Clonecount).

Old C/S Commands

Bruker Optik GmbH OEM DLL 8–17

8.3.20 UNLOAD_FILE

Syntax:

“UNLOAD_FILE <File name> or <File number>”

Description:

Unloads a file from OPUS selection line. The argument to this command is the
file name (including clonecount).

Return Value:

“OK” or error message.

Error:

“Syntax: UNLOAD_FILE <File name> or <File number>”

“File not loaded”

Return Value 2:

<Path and name of the file>

<File number>

Comment:

OPUS unloads the selected file. The complete path and file name, as well as the
entry number will be returned. If the path of the file is not specified, OPUS
searches the “Data Path” directory for the file.

For reasons of compatibility to OPUS-OS/2 the file can still be accessed via an
internal file number, but this number is no longer limited to the region between
1 to 699.

The file name returned by the command is hyphenated for further use in the
command line and is followed by the number of the copy (clonecount).

8.3.21 START_MACRO

Syntax:

“START_MACRO <Macro file name>[<Number of input parameters>]”

Description:

Starts an OPUS macro. Input parameters can be forwarded to the macro. If
parameters are exchanged, the total number of parameters must be defined as
the second parameter. If this number is omitted, then it will be set to 0; in this
case, no parameters are read. If the number of input parameters is larger than 0,

Client/Server Reference

8–18 OEM DLL Bruker Optik GmbH

the input parameters <input parameter 1>, <input parameter 2>,, <input
parameter N> have to be sent by the client program. In addition, the macro can
return parameter values to the client program.

Return Value:

Immediately after the command execution (i.e. directly after the starting the
macro):

“OK” or error message.

Return Value 2:

After macro execution:

“OK” or error message.

Return Value 3:

only if the macro returned parameters:

<Number of return value parameters>

<Return value parameter 1>

< Return value parameter 2>

...

<Return value parameter N>

Return Value 4:

only if the macro returned parameters:

“OK” or error message.

Error:

“Syntax: START_MACRO <Macro File> <#Parameter>”

“Error in Opus Command Line Execution - ID: %d”

Comment regarding the command:

When executing the command the following order has to be maintained:

• Send command including the macro name and the number of input
parameters (optional).

• Read return value: “OK” or error message.
• Send input parameter.
• Read return value: “OK” or error message.
• Read return value parameter.

Old C/S Commands

Bruker Optik GmbH OEM DLL 8–19

The individual input parameters must be separated by End of Line sequences.

Macro parameters can also directly follow a command; in this case the second
“OK” or error message will not be send.

Comment regarding the macros:

A structure similar to sub macro calls is used to control client programs. Input
parameters will be transferred from the client program to the macro using a
dialog box, that must be located in the first line of the respective macro. Return
values are returned via another dialog box located in the last line of the macro.
As in the case of a sub macro call, both dialog boxes will not be displayed. If
OPUS cannot find a dialog box in the first macro line, the macro will be started
without exchanging parameters, even if they have been sent to OPUS.

In the first dialog box, the input parameters will be assigned from top to bottom;
only variables of type FILE, TEXT FOR EDIT, NUMERIC, TEXT FOR
OUTPUT or CHECK BOX are allowed. Empty lines and variables of type
BUTTON and COMBOBOX will be ignored. If the number of input
paramteres exchanged is not equal to the number of variables in the dialog box,
OPUS terminates the assignment either after all input parameters have been
read or if all macro variables have been assigned. ASCII input paramters will
automatically be converted into the format of the macro variable. Accordingly,
the return values will be transformed by the last dialog box in the macro from
top to bottom into ASCII text, and, delimited by an End of Line character,
returned to the client program. Here also, empty lines and variables of type
BUTTON and COMBOBOX will be ignored. If no dialog box can be found in
the last line of the macro (or if the dialog box is empty), OPUS returns “0” as
number of return value parameters immediately after starting the macro.
Communication will be resumed without waiting for the macro to terminate.

8.3.22 FILE_PARAMETERS

Syntax:

“FILE_PARAMETERS”

Description:

After this command, the READ_PARAMETER command reads a parameter
from the data block of a file specified by the commands
READ_FROM_ENTRY, READ_FROM_FILE or READ_FROM_BLOCK.

Return Value:

“OK”

Comment:

This is the default setting for the READ_PARAMETER command.

Client/Server Reference

8–20 OEM DLL Bruker Optik GmbH

8.3.23 OPUS_PARAMETERS

Syntax:

“OPUS_PARAMETERS”

Description:

After this command, READ_PARAMETER reads a parameter from the OPUS
default parameter set.

Return Value:

“OK”

8.3.24 READ_PARAMETER

Syntax:

“READ_PARAMETER <Parameter name>”

Description:

Reads a parameter either from a specified data block of an OPUS file or from
the standard OPUS parameter set.

Return Value:

“OK” or error message.

Error:

“Syntax: READ_PARAMETER <parameter name>”

“No Filename or Filenumber defined”

“No Blocktype defined”

“Parameter not found”

“Invalid Parameter Name”

Return Value 2:

<Parameter value>

Comment:

The parameter name forwarded as argument to the command consists of a three-
character abbreviation. After the confirmation by OPUS, the parameter value
will be transferred as ASCII text.

Old C/S Commands

Bruker Optik GmbH OEM DLL 8–21

8.3.25 WRITE_PARAMETER

Syntax:

“WRITE_PARAMETER <Parameter name> <Parameter value>”

Description:

The WRITE_PARAMETER command writes a parameter or changes an
existing one in the OPUS file specified by either READ_FROM_ENTRY or
READ_FROM_FILE and READ_FROM_BLOCK.

Return Value:

“OK” or error message.

Error:

“Syntax: WRITE_PARAMETER <Parameter name> <Parameter value>”

“No Filename or Filenumber defined”

“No Blocktype defined”

“Parameter not found”

“Invalid Parameter Name”

Comment:

The parameter name forwarded as argument to the command consists of a three-
character abbreviation.

The parameter value will be forwarded as ASCII text file, i.e. numerical values
have to be converted to ASCII strings.

8.3.26 RUN_MACRO

Syntax:

Equivalent to START_MACRO

Description:

The RUN_MACRO command starts a macro. Contrary to START_MACRO,
the control is returned immediately after the macro was started. The
RUN_MACRO command does not wait for the macro to terminate and also
does not return any results.

Client/Server Reference

8–22 OEM DLL Bruker Optik GmbH

Return Value:

After the command:

“OK” or error message.

Return Value 2:

After transferring the input parameter:

“OK” or error message.

Return Value 3:

<MacroID>: a macro identification number unique for each macro session.

Error:

Similar to START_MACRO

Comment:

See also START_MACRO.

To access the results of the macro started, the MACRO_RESULTS commands
is used.

The returned <MacroID> is used as parameter for the MACRO_RESULTS and
the KILL_MACRO commands.

8.3.27 MACRO_RESULTS
Syntax:

“MACRO_RESULTS <MacroID>”

Description:

The MACRO_RESULTS command retrieves the result parameters of a macro
session that was started with the ID <MacroID>, using the RUN_MACRO
command.

Return Value:

“OK” or error message.

Return Value 2:

0 or 1 to indicate whether the macro has already finished or is still running.

Return Value 3:

Containing the results, if the macro was terminated. For a format description
see START_MACRO.

Obsolete Commands

Bruker Optik GmbH OEM DLL 8–23

Error:

“Syntax: MACRO_RESULTS <MacroID>”

“Invalid Macro ID”

Comment:

In combination with the RUN_MACRO command, this command allows client
programs to run different tasks while the macro is still running. Use this com-
mand to frequently check, whether the macro has finished and to obtain the
return parameters.

8.3.28 KILL_MACRO

Syntax:

“KILL_MACRO <MacroID>”

Description:

KILL_MACRO terminates a macro session started by RUN_MACRO with the
specified macro ID.

Return Value:

“OK” or error message.

Error:

“Syntax: KILL_MACRO <MacroID>”

“Invalid Macro ID”

Comment:

In combination with the RUN_MACRO command this command allows client
programs to run different tasks while the macro is still running. Under certain
conditions a client program can use this command to stop a macro that is still
running. This corresponds to the Abort Task command of the OPUS task bar.

8.4 Obsolete Commands

The following commands are only supported out of compatibility reasons to
OPUS-OS/2. Due to the different concept of OPUS-NT, they are no longer of
any practical importance.

Client/Server Reference

8–24 OEM DLL Bruker Optik GmbH

8.4.1 OVERWRITE

Syntax:

“OVERWRITE”

Description:

Allows the subsequent commands to overwrite files and data blocks.

Return Value:

“OK”

Comment:

Subsequent to this command, the following commands are allowed to overwrite
files and data blocks:

WRITE_TO_ENTRY

WRITE_TO_FILE

WRITE_TO_BLOCK

8.4.2 PRESERVE

Syntax:

“PRESERVE”

Description:

Prevents files and data blocks from being replaced.

Return Value:

“OK” or error message.

Error:

“Set OVERWRITE mode to replace blocks”

Comment:

Subsequent to this command, the following commands cannot replace existing
files and data blocks:

WRITE_TO_ENTRY

WRITE_TO_FILE

WRITE_TO BLOCK

New Commands

Bruker Optik GmbH OEM DLL 8–25

If an existing data block was specified in a WRITE_TO_BLOCK command,
OPUS returned the message “Set OVERWRITE mode to replace blocks”.

In case of a WRITE_TO_ENTRY or WRITE_TO_FILE command, the file
name extension was incremented until the first non-existing file was obtained.

Example:

Assume the files TEST.2 and TEST.3 already exist in the current OPUS\DATA
directory. The “WRITE_TO_FILE TEST.1” command is sent twice. The first
time the command is executed and generates the file TEST.1. The second time,
the file name extension is incremented until the first non-existing file name is
obtained (TEST.1), because it is not allowed to replace the now existing file
TEST.1.

8.4.3 TIMEOUT
Syntax:

“TIMEOUT <Delay>”

Description:

Sets a delay time (in seconds) for the pipe, which may not be replaced during
read and write processes.

Return Value:

“OK” or error message.

Error:

“Invalid time limit”

“Syntax: TIMEOUT<Seconds>”

Comment:

The delay is an integer between l and 1000. Without this command the default
value of 10 seconds will be used.

8.5 New Commands

The first view commands of this section serve to further specify the binary
transfer mode. They mainly concern the data exchange with scripts. Because
scripts allow no direct memory access, the data must be enclosed in a variable
field to allow binary data exchange. Hence, the single elements are assigned a
certain type: BYTE_MODE, INT_MODE, FLOAT_MODE, and
DOUBLE_MODE allow to define, whether the binary OPUS data will be
contained in a BYTE, INTEGER, FLOAT, or DOUBLE field in a script.

Client/Server Reference

8–26 OEM DLL Bruker Optik GmbH

In case of a pipe, the respective memory region can be transferred directly,
which then will be interpreted on the receiving side.

No binary return values are allowed when using DDE connections; these are
available in the HEXSTRING_MODE.

8.5.1 BYTE_MODE

Syntax:

“BYTE_MODE”

Description:

Sets the binary transfer mode to single bytes.

Return Value:

“OK”

8.5.2 INT_MODE

Syntax:

“INT_MODE”

Description:

Sets the binary transfer mode to integer.

Return Value:

“OK”

8.5.3 FLOAT_MODE

Syntax:

“FLOAT_MODE”

Description:

Sets the binary transfer mode to floating-point numbers.

Return Value:

“OK”

New Commands

Bruker Optik GmbH OEM DLL 8–27

8.5.4 DOUBLE_MODE

Syntax:

“DOUBLE_MODE”

Description:

Sets the binary transfer mode to double-precision.

Return Value:

“OK”

8.5.5 HEXSTRING_MODE

Syntax:

“HEXSTRING_MODE”

Description:

Sets the binary transfer mode to text.

Return Value:

“OK” or error message.

Comment:

DDE connection default settings for binary mode.

The data is converted to individual strings of numbers, depending on the mode
chosen (BYTE_MODE, INT_MODE, FLOAT_MODE and DOUBLE_MODE)
and will be transmitted as text.

8.5.6 FLOATCONV_MODE

Syntax:

“FLOATCONV_MODE ON|OFF”

Description:

Switches the conversion of floating-point numbers on and off, when using
binary transfer mode.

Return Value:

“OK” or “ON|OFF”

Client/Server Reference

8–28 OEM DLL Bruker Optik GmbH

Comment:

When using a pipe for binary data transfer under OS/2, a scaling factor was
transferred prior to the actual data. This factor was also transferred binary, but
compared to the data transfer at double-precision (8 instead of 4 bytes). In
OPUS-NT, this factor is found in the first element of the returned field.

If FLOATCONV_MODE is not selected for the binary data transfer to a script,
the first 8 bytes of data (the double-precision scaling factor) will be
misinterpreted as two single-precision floating-point numbers.

If neither „ON“ nor „OFF“ is forwarded as parameter the return value text
provides the current settings.

8.5.7 GET_DISPLAY

Syntax:

“GET_DISPLAY”

Description:

Provides an identification number of the currently active display window.

Return Value:

“OK”

Return Value 2:

<WindowID>

Comment:

The number returned can be used as parameter for the SET_WINDOW,
CLOSE_WINDOW, and POSITION_WINDOW commands.

8.5.8 SET_WINDOW

Syntax:

“SET_WINDOW <WindowID>”

Description:

The window specified by the identification number will be promoted to be the
active display window for the current C/S session.

Return Value:

“OK” or error message.

New Commands

Bruker Optik GmbH OEM DLL 8–29

Error:

“Syntax: SET_WINDOW <Window>”

Comment:

If new files are loaded or generated by another OPUS function, they will be
displayed in the currently active window. The function is used to define this
window.

8.5.9 NEW_WINDOW

Syntax:

“NEW_WINDOW <Window type>”

Description:

Creates a new window of the type specified.

Return Value:

“OK” or error message.

Error:

“Syntax: NEW_WINDOW <Window type>”

“Error creating View”

Comment:

The window type defines, that for example a new report window will be
generated.

8.5.10 CLOSE_WINDOW

Syntax:

“CLOSE_WINDOW <WindowID>”

Description:

Closes the window specified by the <WindowID>.

Return Value:

“OK” or error message.

Error:

“Syntax: CLOSE_WINDOW <Window>”

Client/Server Reference

8–30 OEM DLL Bruker Optik GmbH

Comment:

The parameter <WindowID> necessary to address the display window can
result from either NEW_WINDOW or from GET_DISPLAY.

8.5.11 POSITION_WINDOW

Syntax:

“POSITION_WINDOW <WindowID> <x> <y> <cx> <cy>”

Description:

Positions the display window specified by <WindowID> at the coordinates
<x>, <y> and re-sizes it to <cx>, <cy>.

Return Value:

“OK” or error message.

Error:

“Syntax: POSITION_WINDOW <Window> <x> <y> <cx> <cy>\n”

Comment:

The parameter <WindowID>, necessary to address the display window, can
result from either NEW_WINDOW or from GET_DISPLAY.

8.5.12 GET_LANGUAGE

Syntax:

“GET_LANGUAGE”

Description:

Retrieves the current language settings of OPUS-NT. The language is set using
the command line argument /LANGUAGE when starting OPUS.

Return Value:

“OK”

Return Value 2:

<Language>

Comment:

The name of the language will be returned as text.

New Commands

Bruker Optik GmbH OEM DLL 8–31

8.5.13 GET_OPUSPATH

Syntax:

“GET_OPUSPATH”

Description:

Retrieves the path of the currently running OPUS program.

Return Value:

“OK”

Return Value 2:

<Path>

Comment:

The path can be checked in the User Settings dialog box of the Setup OPUS
pull-down menu.

8.5.14 GET_BASEPATH

Syntax:

“GET_BASEPATH”

Description:

Retrieves the default path of the currently logged in user.

Return Value:

“OK”

Return Value 2:

<Path>

Comment:

The path is set in the User Settings dialog box of the Setup OPUS pull-down
menu.

8.5.15 GET_DATAPATH

Syntax:

“GET_DATAPATH”

Client/Server Reference

8–32 OEM DLL Bruker Optik GmbH

Description:

Retrieves the data path of the currently logged in user.

Return Value:

“OK”

Return Value 2:

<Path>

Comment:

The path is set in the User Settings dialog box of the Setup OPUS pull-down
menu.

8.5.16 GET_WORKPATH

Syntax:

“GET_WORKPATH”

Description:

Retrieves the path for work files of the currently logged in user.

Return Value:

“OK”

Return Value 2:

<Path>

Comment:

The path is set in the User Settings dialog box of the Setup OPUS pull-down
menu.

8.5.17 GET_USERNAME

Syntax:

“GET_USERNAME”

Description:

Retrieves the name of the currently logged in user.

New Commands

Bruker Optik GmbH OEM DLL 8–33

Return Value:

“OK”

Return Value 2:

<Name>

Comment:

The user account is set in the User Settings dialog box of the Setup OPUS pull-
down menu.

8.5.18 GET_BENCH

Syntax:

“GET_BENCH”

Description:

Retrieves the configuration file of the currently selected spectrometer.

Return Value:

“OK”

Return Value 2:

<OpticsFile>

8.5.19 UPDATE_BENCH

Syntax:

“UPDATE_BENCH <OpticsFile>”

Description:

Triggers OPUS to initialize the optics configuration using the settings stored in
the <OpticsFile>.

Return Value:

“OK” or error message.

Error:

“Syntax: UPDATE_BENCH <inifile>”

“RebuildParmText error”

Client/Server Reference

8–34 OEM DLL Bruker Optik GmbH

8.5.20 COMMAND_SAY

Syntax:

“COMMAND_SAY <Text>”

Description:

Returns the transferred commands in text format.

Return Value:

<Text>

Comment:

This command serves to test the communication between OPUS and the client
program. It can also be used to forward parameters to scripts. To do this, call
the OpusCommand function of a form created with the OpenForm command (or
selected with FormByName), and forward parameters using COMMAND_SAY
<Parameter>. The form receives the parameter with OnOpusResult
<Parameter>.

8.5.21 REPORT_INFO

Syntax:

“REPORT_INFO”

Description:

Retrieves information about the number of main and sub reports of an OPUS
report block.

Return Value:

“OK” or error message.

Return Value 2:

<#Main reports>

<#Sub reports 1>

...

<#Sub reports N>

Error:

“No Filename or Filenumber defined”

New Commands

Bruker Optik GmbH OEM DLL 8–35

“No Blocktype defined”

“Error Reading Report”

Comment:

First, the total number of main reports is returned, followed by the number of
sub reports contained in each main report. Each line holds only one number.

The information is obtained from the OPUS report block selected by the
READ_FROM_FILE, READ_FROM_ENTRY and READ_FROM_BLOCK
commands.

8.5.22 HEADER_INFO

Syntax:

“HEADER_INFO <Main report> <Sub report>”

Description:

Returns the number of lines in an OPUS report block header.

Return Value:

“OK” or error message.

Return Value 2:

<Lines>

Error:

“No Filename or Filenumber defined”

“No Blocktype defined”

“Error Reading Report”

Comment:

If no sub report is specified, the number of lines in the header of the main report
block is returned instead. If also no main report is specified, the first main
report will be taken.

The information is obtained form the OPUS report block selected by the
READ_FROM_FILE, READ_FROM_ENTRY and READ_FROM_BLOCK
commands.

Client/Server Reference

8–36 OEM DLL Bruker Optik GmbH

8.5.23 MATRIX_INFO

Syntax:

“MATRIX_INFO <Main report> <Sub report>”

Description:

Returns the dimension (number of rows and columns) of a matrix stored in an
OPUS report block.

Return Value:

“OK” or error message.

Return Value 2:

<Rows>

<Columns>

Error:

“No Filename or Filenumber defined”

“No Blocktype defined”

“Error Reading Report”

Comment:

If no sub report is specified, the number of rows in the main reports’ header will
be returned. If also no main report is specified, the first main report will be
taken.

The information is obtained form the OPUS report block selected by the
READ_FROM_FILE, READ_FROM_ENTRY, and READ_FROM_BLOCK
commands.

8.5.24 MATRIX_ELEMENT

Syntax:

“MATRIX_ELEMENT <Main report> <Sub report> <Row> <Column>”

Description:

Reads an element from a data matrix of an OPUS report block. The index of the
main/sub report as well as the index of the row and column has to be indicated.

New Commands

Bruker Optik GmbH OEM DLL 8–37

Return Value:

“OK” or error message.

Return Value 2:

<MatrixElement>

Error:

“Syntax: MATRIX_ELEMENT <MainReport> <SubReport> <Row>
<Column>”

“No Filename or Filenumber defined”

“No Blocktype defined”

“Error Reading Report”

Comment:

If the main report should be accessed, the sub report number must be set to “0”.

Determine the total number of rows and columns, using the MATRIX_INFO
command.

All values are converted to text format prior to the transfer, regardless of the
data format of the element.

The information is obtained form the OPUS report block selected by the
READ_FROM_FILE/READ_FROM_ENTRY, and READ_FROM_BLOCK
commands.

8.5.25 HEADER_ELEMENT

Syntax:

“HEADER_ELEMENT <Main report> <Sub report> <Row>”

Description:

Reads an element from the OPUS report block header. The index of the main/
sub report as well as the number of the row has to be indicated.

Return Value:

“OK” or error message.

Return Value 2:

<ElementName>

<ElementContent>

Client/Server Reference

8–38 OEM DLL Bruker Optik GmbH

Error:

“Syntax: HEADER_ELEMENT <MainReport> <SubReport> <Row>”

“No Filename or Filenumber defined”

“No Blocktype defined”

“Error Reading Report”

Comment:

The name of the feature in the selected header row and its value will be
returned. If the main report should be accessed, the sub report number must be
set to “0”.

Determine the total number of rows and columns using the HEADER_INFO
command.

All values are converted to text format prior to the transfer, regardless of the
data format of the element.

The information is obtained form the OPUS report block selected by the
READ_FROM_FILE/READ_FROM_ENTRY and READ_FROM_BLOCK
commands.

8.5.26 COMMAND_MODE

Syntax:

“COMMAND_MODE”

Description:

Sets the mode for processing a command line to COMMAND_MODE. This
mode runs commands and programs in the background and returns a message
after termination of the program.

Return Value:

“OK”

Comment:

Usually, this mode doesn’t need to be explicitly set, since these modi are pre-
defined for the different transfer types and interfaces or alternatively are set by
different calls (like OpusExecute).

New Commands

Bruker Optik GmbH OEM DLL 8–39

8.5.27 EXECUTE_MODE

Syntax:

“EXECUTE_MODE”

Description:

Sets the mode for processing a command line to EXECUTE_MODE. This
mode runs commands and programs in the background, but does not wait for the
programs to terminate. No message will be returned when a program has
finished.

Return Value:

“OK”

Comment:

Usually, this mode doesn’t need to be explicitly set, since these modi are pre-
defined for the different transfer types and interfaces or alternatively are set by
different calls (like OpusExecute).

8.5.28 REQUEST_MODE

Syntax:

“REQUEST_MODE”

Description:

Sets the mode for processing a command line to REQUEST_MODE. This
mode does not run commands and programs in the background, but waits for the
programs to terminate. The result will be returned as soon as the program
terminates.

Return Value:

“OK”

Comment:

Usually, this mode doesn’t need to be explicitly set, since these modi are pre-
defined for the different transfer types and interfaces or alternatively are set by
different calls (like OpusExecute).

Client/Server Reference

8–40 OEM DLL Bruker Optik GmbH

8.5.29 CLOSE_OPUS

Syntax:

“CLOSE_OPUS”

Description:

Terminates OPUS.

Return Value:

No return values.

Comment:

This operation is similar to closing the OPUS user interface window.

8.5.30 TAKE_REFERENCE

Syntax:

“TAKE_REFERENCE <Experiment file>”

Description:

Performs a reference measurement using the specified <Experiment file>.

Return Value:

“OK” or error message.

Error:

“Error in Opus Command Line Execution - ID: %d”

8.5.31 MEASURE_SAMPLE

Syntax:

“MEASURE_SAMPLE <Experiment file>”

Description:

Performs a sample measurement using the specified <Experiment file> and
returns the acquired spectral data as text.

Return Value:

“OK” or error message.

New Commands

Bruker Optik GmbH OEM DLL 8–41

Return Value 2:

Result File:<File number>

<File name>

Block: <Block type>

<UnitsX>

<UnitsY>

Points: <Number of points>

<x1> <y1>

...

<xn> <yn>

Error:

“Error in Opus Command Line Execution - ID: %d”

Comment:

All blocks of the new file (specified by the experiment file) are transmitted in
succession as data point tables.

8.5.32 COMMAND_LINE

Syntax:

“COMMAND_LINE <Command line>”

Description:

Calls an OPUS function as command lines.

Return Value:

“OK” or error message.

Return Value 2:

Only in combination with COMMAND_MODE

<ThreadID>

Error:

“Error in Opus Command Line Execution - ID: %d”

Client/Server Reference

8–42 OEM DLL Bruker Optik GmbH

Comment:

In this exception, the keyword COMMAND_LINE can be omitted, because
OPUS tries to interpret all unknown C/S commands in command line notation.

The actual type of command processing depends on the call of the command (in
case of scripts for example OpusExecute), or the settings made by
COMMAND_MODE, EXECUTE_MODE, and REQUEST_MODE.

If COMMAND_MODE was selected, an identification number is supplied for
the background calculation, which can be used to abort the function in case of
STOP_THREAD.

8.5.33 STOP_THREAD

Syntax:

“STOP_THREAD <ThreadID>”

Description:

Terminates a OPUS processing function which was started by the
COMMAND_LINE function while COMMAND_MODE was selected.

Return Value:

“OK” or error message.

Error:

“Syntax: STOP_THREAD <ThreadID>”

Comment:

In COMMAND_MODE, COMMAND_LINE starts the function in the
background and returns an identification number. This number can be used to
abort the function. This is similar to the Abort Task command of the task
manager.

Note: Aborting a program may result in data loss and produce corrupt OPUS
files. Therefore, it should only be used in emergencies.

8.5.34 ACTIVATE_DIALOG

Syntax:

“ACTIVATE_DIALOG <Command line>”

Description:

Starts the dialog box of an OPUS function.

New Commands

Bruker Optik GmbH OEM DLL 8–43

Return Value:

“OK” or error message.

Error:

“Syntax: ACTIVATE_DIALOG CommandLine()”

Comment:

Opening an OPUS function dialog box within another program usually is not
very practical, since the program cannot control the dialog box once it has been
opened. A command line is required as a parameter similar to direct command
processing.

8.5.35 LOAD_EXPERIMENT

Syntax:

“LOAD_EXPERIMENT <Experiment file>”

Description:

Loads an experiment file in OPUS and sets the parameters for subsequent data
acquisitions.

Return Value:

“OK” or error message.

Error:

“Syntax: LOAD_EXPERIMENT <parameter file>”

“Unable to load Experiment file”

Comment:

This command is similar to the respective function of the OPUS Measurement
dialog box.

8.5.36 GET_USERRIGHTS

Syntax:

“GET_USERRIGHTS”

Description:

Retrieves the rights of the current user.

Client/Server Reference

8–44 OEM DLL Bruker Optik GmbH

Return Value:

“OK”

Return Value2:

A list of user rights separated by semicolons or “No Rights”

Comment:

Allows to adjust programs/scripts to perform different actions, depending on the
user rights.

8.5.37 PACKET_AVAILABLE

Syntax:

“PACKET_AVAILABLE <Packet name>”

Description:

Tests if certain OPUS software packages are installed on a computer.

Return Value:

“Yes”, “No” or error message.

Error:

“Syntax: PACKET_AVAILABLE <Packet name>”

Comment:

Allows a script or program to determine, whether a software package or an
OPUS function is available at all. This applies to QUANT, SEARCH, 3D etc..

8.5.38 GET_CLIENTAREA

Syntax:

“GET_CLIENTAREA”

Description:

Retrieves the available window size of the OPUS main window. This is
dependent on the chosen screen resolution. The result can be used for the
positioning of script forms and spectrum windows etc.

Return Value:

“OK”

New Commands

Bruker Optik GmbH OEM DLL 8–45

Return Value2:

<width> <height>

Comment:

The returned values can be used as parameters for POSITION_WINDOW.

8.5.39 ACTIVATE_DISPLAY

Syntax:

“ACTIVATE_DISPLAY” <WindowID>

Description:

A spectrum window can be activated using this command. It will then be
displayed in the front. The window specified by the ID number will then be the
active window for displaying the spectra.

Return Value:

“OK” or error message

Error:

“Syntax: ACTIVATE_DISPLAY <window>

Comment:

If new files are loaded or created by other OPUS functions, they will then be
displayed in the currently active window. The active window can be determined
with this function. Whereas SET_WINDOW is only valid for files used in
script, here the active window e.g. for manual loading can be set.

8.5.40 GET_LIMITS

Syntax:

“GET_LIMITS <WindowID>”

Description:

Lists the actual display limits of the window.

Return Value:

“OK” or error message

Return Value 2:

<X1> <Y1> <X2> <Y2>

Client/Server Reference

8–46 OEM DLL Bruker Optik GmbH

Error:

“Syntax: GET_LIMITS <window>”

Comment:

The <WindowID> can either be a result of NEW_WINDOW or
GET_DISPLAY

8.5.41 SET_LIMITS

Syntax:

“SET_LIMITS <WindowID> <X-start> <X-end> <Y-start> <Y-end>”

Description:

Sets the display limits of the window to the given values. this is useful to e.g.
enlarge certain areas of the spectrum automatically. The four values determine
the coordinates for the new display limits.

Return Value:

“OK” or error message

Error:

“Syntax: SET_LIMITS <window> <xsp> <xep> <ymn> <ymx>”

Comment:

The <WindowID> can either be a result of NEW_WINDOW or
GET_DISPLAY

8.5.42 DISPLAY_BLOCK

Syntax:

“DISPLAY_BLOCK <WindowID> <color>”

Description:

Displays a datablock of an OPUS file selected by the commands
READ_FROM_ENTRY, READ_FROM_FILE or READ_FROM_BLOCK in
a display window determined by <windowID>. <color> determines the color of
the curve as RGB value.

Return Value:

“OK” or error message

New Commands

Bruker Optik GmbH OEM DLL 8–47

Error:

“No Filename or Filenumber defined”

“No Blocktype defined”

“Syntax: DISPLAY_BLOCK <window> <color>”

Comment:

The <WindowID> can either be a result of NEW_WINDOW or
GET_DISPLAY

8.5.43 UNDISPLAY_BLOCK

Syntax:

“UNDISPLAY_BLOCK <WindowID>”

Description:

Removes a datablock of an OPUS file specified by READ_FROM_ENTRY,
READ_FROM_FILE or READ_FROM_BLOCK from the window identified
by <WindowID>.

Return Value:

“OK” or error message

Error:

“No Filename or Filenumber defined”

“No Blocktype defined”

“Syntax: UNDISPLAY_BLOCK <window>”

Comment:

The <WindowID> can either be a result of NEW_WINDOW or
GET_DISPLAY

8.5.44 ENUM_STRINGS

Syntax:

“ENUM_STRINGS <parametername>

Description:

Possible values for a parameter of type ENUM can be requested at the given
conditions, e.g. depending on the spectrometer.

Client/Server Reference

8–48 OEM DLL Bruker Optik GmbH

Return Value:

“OK” or error message

Return Value 2:

<number of the following valid strings>

<first parameterstring>

...

<last parameterstring>

Error:

“Syntax: ENUM_STRINGS <parameter name>”

“Invalid Parameter Name”

“No Enum Strings”

Comment:

The parameter name transferred as an argumentis a three letter abbrevation of a
parameter.

8.5.45 GET_VERSION

Syntax:

“GET_VERSION>”

Description:

Returns the version of the currently running OPUS NT program.

Return Value:

“OK”

Return Value 2:

<Version>

Error:

Comment:

Enables the reaction on and the controlling of, different current OPUS versions
from one program.

New Commands

Bruker Optik GmbH OEM DLL 8–49

8.5.46 ASK_THREAD

Syntax:

“ASK_THREAD <ProcessID> <special command>

Description:

Enables the interprocess communication of an external program with a running
Opus function.

Return Value:

“OK” or error message

Return Value 2:

depending on the transferred command

Error:

“ASK_THREAD failed”

“Invalid Thread ID”

Comment:

This direct communication with currently running OPUS functions is intended
only for very special applications. It is mentioned here only for the sake of
completeness. However it is actually reserved to internal programming and is
used for the coupling with other instruments. One receives the ProcessID either
when starting the function in the COMMAND_MODE or through
FIND_FUNCTION

8.5.47 FIND_FUNCTION

Syntax:

“FIND_FUNCTION <function name>”

Description:

Determines whether a certain OPUS function is executed in the background.
The returned ID can be used to stop the function or to communicate with it (if
supported).

Return Value:

“OK” or error message

Client/Server Reference

8–50 OEM DLL Bruker Optik GmbH

Return Value 2:

<ProcessID> for identification

Error:

“Syntax: FIND_FUNCTION <FunctionName> or <ThreadID>

“Function not found”

Comment:

This direct communication with currently running OPUS functions is intended
only for very special applications. It is mentioned here only for the sake of
completeness. However it is actually reserved to internal programming and is
used for the coupling with other instruments.

8.5.48 WORKBOOK_MODE

Syntax:

“WORKBOOK_MODE ON|OFF”

Description:

Turns the tabs for switching between different windows at the bottom of the
OPUS window on or off.

Return Value:

“OK” or ON|OFF”

Error:

Comment:

When the buttons are deactivated, switching between different windows is no
longer possible. In the case that a simple user interface is required, one prevents
thereby deviations from the operational sequence intended.

8.5.49 GET_SELECTED

Syntax:

“GET_SELECTED”

Description:

Supplies the names of the selected (red bordered) files.

New Commands

Bruker Optik GmbH OEM DLL 8–51

Return Value:

“OK” or error message

Return Value 2:

<name of selected files>

Error:

“Error while getting file info”

Comment:

The normal behavior of OPUS, to automatically select marked files for the
processing functions, is extended to self-written extension functions.

8.5.50 LIST_BLOCKS

Syntax:

“LIST_BLOCKS”

Description:

Lists all available spectral data blocks of the OPUS file delivered by the
command READ_FROM_ENTRY or READ_FROM_FILE.

Return Value:

“OK” or error message

Return Value 2:

<number of block names>

<first block name>

...

<last block name>

Error:

“No Filename or Filenumber defined”

“Error getting blocks”

Comment:

Enables to determine which blocks are containing an unknown file and then
work with the correct ones accordingly.

Client/Server Reference

8–52 OEM DLL Bruker Optik GmbH

8.5.51 SHOW_TOOLBAR

Syntax:

“SHOW_TOOLBAR <toolbar>”

Description:

Shows a toolbar. Valid parameters are:

MENU, STANDARD, COMMANDLINE, PLE, DISPLAY, MEASURE,
MANIPULATE, EVALUATE, MDISPLAY, PLOT_PRINT, MACRO, INFO,
USER, SETUP, FILE, BROWSER, STATUSBAR

Return Value:

“OK” or “Already visible”

Error:

“Syntax: SHOW_TOOLBAR <toolbarID>”

“Unknown Toolbar”

Comment:

Warning: The adjustments on the desktop made with this function are stored
when leaving OPUS. In order to avoid unwanted effects, all modifications of the
original configuration should be cancelled again before the final termination of
the self-written program!

8.5.52 HIDE_TOOLBAR
Syntax:

“HIDE_TOOLBAR <toolbar>”

Description:

Hides a toolbar. Valid parameters are:

MENU, STANDARD, COMMANDLINE, PLE, DISPLAY, MEASURE,
MANIPULATE, EVALUATE, MDISPLAY, PLOT_PRINT, MACRO, INFO,
USER, SETUP, FILE, BROWSER, STATUSBAR

Return Value:

“OK” or “Already visible”

Error:

“Syntax: HIDE_TOOLBAR <toolbarID>”

“Unknown Toolbar”

New Commands

Bruker Optik GmbH OEM DLL 8–53

Comment:

Warning: The adjustments on the desktop made with this function are stored
when leaving OPUS. In order to avoid unwanted effects, all modifications of the
original configuration should be cancelled again before the final termination of
the self-written program!

8.5.53 QUICK_PRINT

Syntax:

“QUICK_PRINT”

Description:

Activates the function “Quickprint”. The currently active window will be
printed.

Return Value:

“OK”

Error:

Comment:

To print a certain window with this function, it has to be activated with
ACTIVATE_DISPLAY first.

Client/Server Reference

8–54 OEM DLL Bruker Optik GmbH

Startup problem

Bruker Optik GmbH OEM DLL 9–1

9 Problems and Solutions

9.1 Startup problem

The only two things that may go wrong with InitInstrument are that the .nti file
is not found in the application directory (or it is corrupted) or that there is no
userdatabase subdirectory with a valid userdatabase.dat file. Take it from an
opus installation or try the one on the CD.

The next thing in the order of the startup would be loading of the workspace:

9.2 "Failed to open document"

The message "Failed to open document" refers to an opus workspace file that is
also used by the DLL. If there is no default.ows in the directory of the project or
this is corrupted you will get this message and you cannot continue at all from
there on.

Please try to copy the file default.ows from the original CD or you can also use
an unmodified version from a normal Opus installation.

9.3 File not found in filetable

The most likely cause for a file not found in filetable is that the result file could
not be created. Try to add NAM and PTH also to the command and make sure
that the destination is not the problem. Apart from that in case you have
corrupted the opus.bg file you might have to delete that file.

9.4 Error in commandline

The command line you are sending use very specific syntax and you have to
make sure that all the characters are there. If something could not be interpreted
you might get errors like this. The Error in Opus Command Line Execution
basically informs us that Opus received a command it did not recognize.

The error code 8 means COMMAND_INVALID_FILES, i.e. something is
wrong with the file or filelist you are providing. It may be missing or not
containing the right blocks. You should add the right blocktype in the command
line.

Problems and Solutions

9–2 OEM DLL Bruker Optik GmbH

The ID:2 in this case is "unknown command". Thus there must be something
wrong with the command or the parameters passed to the opus function here.
The error message is the result of specific function call and you must check the
exact! parameters used.

9.5 VB error 48/53

This is something like DLL not found To avoid the error 48 VB has to find all
the DLLs. You have to have all the dlls and support files within the directory of
your application.

