Estudios estructurales de los fragmentos amino terminal de los canales de potasio tipo *Shaker* B nativo (ShB) y mutado (ShBL7E)

Centro de Biología Molecular y Celular

Posible topología de los segmentos transmembrana de cada una de las subunidades de un canal de K⁺ tipo *Shaker*.

Un modelo estructural de los canales de potasio dependientes de voltaje

OBJETIVOS

1.- Explicar la diferente capacidad funcional de los péptidos ShB y ShBL7E en términos estructurales, confrontándolos con una diana modelo que contenga elementos que imiten los sitios de unión de la bola inactivante en el canal.

2.- Postular un modelo estructural del péptido inactivante ShB cuando se encuentra unido a la diana modelo.

3.- Explorar la posible regulación de la actividad de estos péptidos, y consecuentemente de los canales de potasio que los contienen, a través de modificaciones post-traduccionales que introduzcan cambios semejantes a los que diferencian al péptido ShB del péptido mutante ShBL7E.

4.- Sintetizar y caracterizar adecuadamente un análogo fotoactivable del péptido ShB, diseñado para marcar covalentemente por fotoafinidad el sitio de la proteína canal al que se une la "bola" inactivante.

Fig. 1: Espectros de dicroismo circular de los péptidos ShB (A) y ShBL7E (B) tomados en H_2O (1), TFE (7) y en mezclas H_2O/TFE .

Fig. 2: Espectros de FTIR de los péptidos ShB y ShBL7E tomados en distintos tampones acuosos: efecto de la fuerza iónica (A) y bandas componentes (B).

Fig. 3: Espectros de FTIR originales (A) y desconvueltos (B) de los péptidos ShB y ShBL7E tomados en distintos tampones acuosos: efecto del pD.

Fig. 4: Efecto del colato 5 mM (A) y 20 mM (B) sobre la banda amida I del espectro de FTIR de los péptidos ShB y ShBL7E. ShB presenta componentes de estructura β , muy estables a la temperatura (C).

Fig. 5: Cromatogramas de HPLC de los péptidos ShB y ShBL7E y los fragmentos resultantes de la hidrólisis con tripsina de estos. Fig. 6: Efecto de la tripsina sobre la banda amida I del espectro de FTIR de los péptidos ShB (A) y ShBL7E (B) en presencia de vesículas de PG: pérdida de los componentes de estructura β .

Número de onda, cm⁻¹

Fig. 7: Banda amida I del espectro de FTIR del péptido ShB en presencia de vesículas de PG en distintas situaciones experimentales: gran estabilidad de los componentes de estructura β .

ShBL7E ShB **A)** B) PC **C**) D) 23 °C PA 70 °C 23 °C E) F) PG 1700 1650 1600 1700 1650 1600 Número de onda, cm⁻¹

Fig. 8: Banda amida I del espectro de FTIR de los péptidos ShB y ShBL7E en presencia de liposomas: sólo ShB adopta estructura β en presencia de fosfolípidos aniónicos. Fig. 9: El péptido ShB adopta estructura β en presencia de fosfolípidos aniónicos de forma independiente a su concentración.

Fig. 12: La adopción de estructura β por parte del péptido ShB en liposomas de DMPG (A) y DMPA (B) ocurre a temperatura superior a la de transición de fase gel a líquido cristalino, lo que sugiere su inserción en el dominio hidrofóbico de la membrana, facilitada por el aumento de fluidez de esta.

Tabla I: Máximos de emisión de fluorescencia (λ_{max}) y coeficiente de partición superficial que presentan los péptidos marcados con NBD en presencia de vesículas de fosfolípido.

		^λ max ^(nm)				<i>K</i> _p ^{* ×} 10 ^{−4} (M ^{−1})		
Nombre del péptido	рН	tampón	PC	ΡΑ	PG	PC	ΡΑ	PG
ShB -NBD	7	555	551	531	531	no unión	77.1±11.6	2.80±1.1
ShBL7E-NDB	7	554	551	533	534	no unión	3.05±1.45	0.72±0.2
ShB -NBD	8.5	552		530	536		1.95±0.65	0.64±0.09
ShBL7E-NBD	8.5	553		536	552		0.62±0.025	⊲0.05

Fig. 13: Ni el péptido ShB ni el ShBL7E se unen a vesículas de PC. Sin embargo, ambos péptidos se unen con gran eficiencia y de forma saturable a vesículas de PA y, en menor medida, de PG.

0 2000 4000 6000 Fosfolípido/péptido (M/M)

Fig. 14: El péptido ShB estabiliza la forma dianiónica del PA.

Tabla II: Secuencia de aminoácidos de derivados del péptido ShB (con el extremo C-terminal amidado) y sus análogos marcados con una sonda fluorescente.

#	nombre del péptido	grado de marcaje	secuencia del péptido				
	•		1 5 10 15 20				
1	ShB		MAAVAG <mark>L</mark> YGLGEDRQHRKKQ				
2	ShBL7E		MAAVAG <mark>E</mark> YGLGEDRQHRKKQ				
3	ShB-21C		MAAVAG <mark>L</mark> YGLGEDRQHRKKQ ^C				
4	ShBL7E-21C		MAAVAG <mark>E</mark> YGLGEDRQHRKKQ ^C				
5	ShB-21C-NBD	89 %	MAAVAGL YGLGEDRQHRKKQ ^{C-NBD}				
6	ShBL7E-21C-NBD	88 %	MAAVAG E YGLGEDRQHRKKQ ^{C-NBD}				
7	ShB-21C-Rho	76 %	MAAVAG L YGLGEDRQHRKKQ C-Rho				
8	ShBL7E-21C-Rho	73 %	MAAVAG E YGLGEDRQHRKKQ ^{C-Rho}				
9	ShB-21C-Pyr	75 %	MAAVAGL YGLGEDRQHRKKQ ^{C-Pyr}				
10	ShBL7E-21C-Pyr	94 %	MAAVAGEYGLGEDRQHRKKQ ^{C-Pyr}				

Fig. 15: Inserción del péptido ShB en vesículas fosfolipídicas aniónicas.

Fig. 16: La inserción del péptido ShB en la bicapa aniónica es dependiente del pH.

Fig. 17: El péptido ShB no produce segregación de dominios lipídicos aniónicos en mezclas binarias.

Fig. 18: No se produce transferencia de energía por resonancia, luego no hay agregación de los péptidos.

unido marcado (A/PL)

400 450 500 550 Longitud de onda (nm) Fig. 19: No se produce formación de excímeros de pireno, lo que confirma la no agregación de los péptidos. Fig. 20: El análisis de las réplicas de criofractura muestra que hay igual número de IMPs en la hemicapa interna que en la externa.

Fig. 22: Esquema de reacción entre el 1-(*p*-azidosalicilamido)-4-(iodoacetamido)butano (ASIB) y un péptido que contenga cisteina para dar lugar a un péptido derivatizado con ASIB.

Fig. 23: El espectro de infrarrojo de los péptidos marcados con ASIB presenta una banda a 2115 cm⁻¹ característica de las azidas aromáticas, que desaparece cuando son irradiados con luz ultravioleta.

Fig. 24: Ningún péptido alteró la velocidad de activación del canal *Shaker*∆4-46.

Fig. 25: El péptido ShB-ASIB es un análogo funcional del péptido ShB.

Inactivación tipo-N

B

Fig. 26: Los péptidos ShB y ShB-ASIB presentan espectros de FTIR similares cuando interaccionan con vesículas fosfolipídicas.

Fig. 27: Fotólisis de los péptidos ShB-21C-ASIB (A), ShBL7E-21-ASIB (B) y del ASIB (C).

Fig. 29: El péptido ShBY8(P) no es inactivante.

Fig. 30: El péptido ShBY8(P) se comporta estructuralmente como ShBL7E.

Tabla III: Efecto de diferentes péptidos sobre el curso temporal de la activación e inactivación de corrientes de K⁺ en canales ShB Δ 6-46. La constante de activación ($\tau_{1/2}$) se mide como el tiempo necesario para alcanzar el 50 % de la amplitud máxima de la corriente a diferentes potenciales. El valor de la constante de inactivación (τ) se estima ajustando el tramo de disminución de la corriente a una función exponencial de caida simple. Media ± desviación estándar (n).

	t1/2 a	t1/	t1/2 inactivación (ms)		
Péptido Control (sin péptido) ShB ShB-Y8(P) ShB-Y8(P) (Quinasa Src)	-20 mV 5.63±1.12 (7) 4.91±0.95 (5) 5.87±1.03 (5) 5.65±0.89 (4)	0 mV 3.28±0.43 (8) 3.17±0.39 (7) 3.39±0.47 (5) 3.35±0.32 (4)	+20 mV 2.32±0.21 (8) 2.22±0.23 (6) 2.38±0.36 (5) 2.17±0.29 (4)	+20 mV 1300±160 (6) 215±48 (6) 766±87 (6) 634±81 (5)	

Fig. 31: A pD básico el grupo fosforilo de la Tyr8 debe encontrarse en forma dianiónica, lo que impide la unión péptido-fosfolípido y la adopción de estructura β por parte del péptido.

Fig. 33: El péptido ShBY8(P) no se inserta en vesículas fosfolipídicas.

Fig. 34: Propuesta de dos modelos alternativos de estructura en "horquilla β " para el péptido ShB insertado en vesículas fosfolipídicas aniónicas. El giro necesario para que se forme esta estructura puede tener lugar a partir de dos secuencias de tetrapéptido: VAGL (panel **A**) y AGLY (panel **B**).

Porcentajes de unión de los péptidos marcados con NBD a distintos fosfolípidos.

100 100 -Porcentaje de péptido unido a PLs 80 -80 – PA/ShBL7 PA/ShBL7E 60 -60 – 40 -40 20 20 0 -0 1400 2800 4200 5600 1400 0 2800 4200 5600 0

Relación molar PLs/péptido

pH 7.0

pH 8.5