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The effects on the protein structure produced by binding of cholinergic agomsts to purified acatylchohne r~eptor (AcChR) reconstituted into lipid 
vesicles, has been studsed by Fourier-transform infrared spectroscopy and dtfferentml scanning calorimetry. Spectral changes in the conformation- 
ally sensitive amlde 1 infrared band indicates that the exposme of the AcChR to the agonist ¢arbamylcholine, under conditions which drive the 
AcChR rote the desensitized state, produces alteratsoqs in the protein u¢¢ondary structure Quantitative estimation of these agonist-mdueed 
alteration5 by band-fitting analysis of the amid¢ 1 spectral band rcveal~ no apprecmble changes m the percent of ~-hclix, but a decrc~ase raft.sheet 
structure, concomitant with an il~erea~ m less ordered stl'ueturcs. Additionally, against binding re~ults in a concentration-dependent increase in 
the protein thermal stability, as indicated by the temperat are dependence of the protein infrared spectrum and by calorimetric analysis, which further 

suggest that AcChR desensitization indued by the chohncrglc agonist implie~ significant rearrangements in the protein structure. 

Torpedo acetylcholine receptor; Fomier-transform infrared spectroscopy; Quantitative estimation of secondary structure; Differential ~canmng 
calorimetr~,; Thermal stability 

1. INTRODUCTION 

The nicotinic acetylcholine receptor (AeChR) from 
Torpedo is a transmembrane glycoprotein composed of 
four different polypeptide subunits (:x, fl, 2" and ~ in a 
2:1:1:1 stoichiometry (see [1--4] for review). Binding of 
eholinergie agonists to the appropriate binding sites on 
extraeeilular domains of the AcChR, elicits the foJ'ma- 
lion of  a transient cation channel, responsible for the 
initiation ofpostsynaptic membrane depolarization. On 
continuous exposure to the agonist, however, the chan- 
nel opening response becomes blocked and the affinity 
for the agonists increases, a process known as desensiti- 
zation. 

AcChR channel activation and the eorrespondmg 
functional responses have been described in great detail 
through the application of biochemical and electrophys- 
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iologicai techniques (s~ [5] and references therein). On 
the contrary, the experimental inlbrmation on the struc- 
tural differences between the resting, open and desensi- 
tized states of the AcChR protein and on tile molecular 
events leading to channel gating or desensitization upon 
agonist binding, is scarce [6,7]. Fourier-transform infra- 
red spectroscopic (FT-IR) methods have shown great 
potential to detect structural differences between the 
various possible conformers ofcomple~ membrane pro- 
teins [8-11], including the AcChR [12-16]. In this paper, 
we have made use of  the conformational sensitivity of  
the protein amide I infrared absorbanee band [! 7,18] to 
probe the effects of agonist binding on structural fea- 
tures of  purified AcChR reconstituted into asolectin 
lipid vesicles. The interference of water infrared absorb- 
ante (1645 cm -i [8]) on the protein amide 1 band has 
been eliminated by using D:O instead of  H.~O as the 
solvent. Tlae strong amide I band, comprising the 1600- 
1700 em -~ spectral region, results primarily from 
stretching vibrations of C = O groups in peptide bonds 
[17], the enact frequencies of  which depend on the na- 
ture of the hydrogen bonding involving the C =O groups 
which, in turn, is determined by the particular second- 
ary structure adopted by the protein [18]. Thus, the 
amide 1 band contours of proteins represent complex 
composites oI'.~pectral components of  characteristic fre- 
quencies, which have been correlated in H20 and D20 
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with different secondary structures in both, soluble and 
membrane-bound proteins. 

2. MATERIALS AND METHODS 

Carbamylcholine chloride, deuterium oxide (D20, 99.9% by atom) 
and crttde extracts of phosphatidylcholine from soybean (type 2-S, 
asolectin lipids) were purchased from Sigma. [l~'Sl]=-Bungarotoxin (0e- 
Bgt) was from New England Nuclear. 

2.3. Differential scanning calorimetry ( DSC) 
DSC was performed on a Microcal MC-2 microcalorimeter, as 

described previously [19]. The difference in the heat capacities between 
I ml aliquots of reconstituted AcChR samples at 1-1.5 mg protein/ml 
(contained in the 'sample' cell of the instrument) and buffer alone 
('reference" cell) were recorded by raising the temperature at a con- 
stant rate of 90=C/h. Reported transition temperatures correspond 
with those at which there is a maximum differential heat capacity, as 
observed in the original thermograms without any baseline correc- 
tions. 

2.1. Acetylcholine receptor purification and reconstitution 
AcChR-enriched membranes were prepared from the electroplax of 

Torpedo marmorata [19]. The AcChR was purified from cholate ex- 
tracts of those membranes by affinity chromatography in the presence 
of asolcctin lipids [I]. The purified AcChR had specific activities of 
approximately 8 nmol of ~-Bgt bound per mg of protein. 

Plain lipid vesicles used for reconstitution were prepared from asol- 
ectin lipids° at --40 mg/mi, by a CHAPS dialysis procedure [5]. The 
dried lipids were hydrated for I h in 10 rnM Tris buffer, pH 7.4, 
containing 100 mM NaC1 and 2% CHAPS, vortexed and sonicated in 
a probe-type Soniprep 150 apparatus. Samples appeared transparent 
at the end of sonication. Lipid vesicles were formed by elimination of 
the detergent by dialysis. The dialyzed samples were resolubilized in 
4% sodium cholate and used inmediately for reconstitution. 

Reconstituted AcChR samples were prepared by mixing aliquots of 
purified AcChR with the solubilized lipid vesicles from above. Final 
concentrations in the reconstitution mixtures were: AcChR, - I  mg/ml; 
asolectin phospholipids,--5 mg/ml; sodium cholate, ! .5%. Under these 
conditions, the lipid to protein molar ratio ranged from 2000 to 3000. 
Reconstitution was accomplished by dialysis at 4°C for about 50 h 
(8 x 1 litre changes in 10 mM THs, pH 7.4, containing 100 mM NaCI). 
The reconstituted AcChR retained fully the ability to undergo agonist- 
induced, affinity transitions between sensitized and desensitized states 
as well as the characteristic cation flux responses to cholinergic ag- 
onists measured by a rapid kinetics, stopped-flow assay of TI ÷ influx 
[201. 

2.2. Infrared measurements 
Exchange of water by D:O in the reconstituted AcChR samples was 

carried out by submitting the samples to at least two centrifugation- 
resuspension cycles in D:O buffers of identical saline composition than 
the original H,O media. The final concentratLon of the samples for 
FT-IR analysis was adjusted to ~20 mg or protein/ml. FT-IR spectra 
were taken in a Nicolet 520 instrument equipped with a DTGS detec- 
tor, as previously described [16]. Standard procedures for Fourier 
derivation and self-deconvolution of the spectra were carried out [21]. 
Derivation was performed using a power of 3, breakpoint of 0.3. 
Seif-deconvolution was performed by using a Lorenztian bandwidth 
of 18 cm -1 and a resolution enhancement factor ranging 1.8-2.0. 

For quantitative estimation of protein secondary structures, curve- 
fitting analysis was accomplished by band decomposition of the orig- 
inal amide I band following an improvement of the method previously 
described [22], whose details have been discussed elsewhere [i 7]. In 
brief, after obtaining band positions and an estimation of band widths 
by Fourier deconvolution and Fourier derivation as described earlier, 
the iterative process is performed in CURVEFIT running under Spec- 
traCa|c (Galactic Industries Corp., Salem, NH), using the height of 
the original spectrum as the initial intensity estimation. The gaussian 
fraction is set to 0.5 for all bands and kept fixed, together with band 
positions, during the first 200 iterations. Then, the gaussian fraction 
is allowed to change in all bands and another 200 iterations are made. 
Bazid positions are also allowed to change for another 20 iterations 
and the final parameters obtained are used to calculate the percent of 
band areas, not taking into account the contributions of side chains 
at 1605 and 1615 cm "1. The fits between experimental and theoretical 
spectra were excellent and exhibited chi-square values ranging 
0.7 x 10 -5 to 4.8 x I0 --~. 

3. RESULTS A N D  DISCUSSION 

Fig. IA shows the 1800-1500 cm -I region of  the infra- 
red spectra of  reconstituted AcChR membranes and 
plain asolectin lipid vesicles in the D20 buffer. The 
absorbance band centered at 1735 cm -t corresponds to 
vibrations from the carbonyl ester groups of  phospho- 
lipids, while those centered at 1653 and 1547 cm -1 are 
the amide I band and a residual amide lI band, respec- 
tively, corresponding mostly to vibrations from the pro- 
tein's peptide bonds [9,16]. 

The information provided by the amide I band in the 
original spectrum is limited by the intrinsic widths o f  the 
spectral components contributed by the different pro- 
tein secondary structures, which are usually larger than 
their frequency separation and thus, result in spectral 
overlapping. Nonetheless, these individual components 
can be visualized after the application of  resolution- 
enhancement, band-narrowing techniques [23-25], such 
as Fourier self-deconvolution and Fourier derivation 
(Fig. I B). On band-narrowing, the amide I region ex- 
hibits maxima at 1605, 1615, 1633, 1656, 1680 and 1690 
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Fig. I. Infrared absorbance spectrum of purified AcChR reconstituted 
into asolectin lipid vesicles and resuspended in a D:O buffer, as indi- 
cated under Materials and Methods. The original spectrum of the 
reconstituted AcChR vesicles and that of plain asolectin lipid vesicles 
are shown in panel A (upper and lower trace, respectively). Panel B 
shows the deconvolved and derivative snectra of the reconstituted 
AcChR vesicles (upper and lower trace, respectively). Bar indicates 
0.05 absorbance units. In this and in all the other figures, the spectra 
of the D20 buffer alone (without AcChR vesicles) were substracted 
from those of the vesicle-containing samples and were recorded at 

20°C, unless stated otherwise. 
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cm -t. Whereas the 1605 and 16i3 cm -t components 
correspond to amino acid side chain vibration, all the 
other maxima have been assigned to vibration of  the 
carbonyl  group in peptide bonds within different pro- 
tein secondary substructures [9,16]: the 1656 cm -1 band 
is at tr ibuted to 0t-helix, the 1633 cm -t to fl-sheet, the 
1690 crn -I to turns and the 1680 crn -t includes contribu- 
tions f rom turns as well as f rom the (0,t0//-sheet vibra- 
tion band.  

Presence ofcarbamy! holine, a cholinergic agonist, at 
concentrations ranging 10 -s to 10 -2 M induces small, 
reproducible changes in the spectral shape of  the amide 
I band (Fig. 2A). These changes (inset to Fig. 2A) refer 
to a progressive, concentration-dependent decrease in 
the absorbance centered at 1653 crn -t and to a concom- 
itant increase in the absorbance at 1642 cm -t. O n  band 
narrowing, a prominent shoulder appears at 1642 crn -t, 
which par t ly  overlaps with the fl-sheet peak at 1633 
cm -t and is not detected in the absence of  carba- 
mylcholine, along with other spectral changes at the 
1700-1670 cm -t region (Fig. 2B). Nevertheless, securing 
quantitative information on the protein secondary 
structural changes responsible for the observed altera- 
tions in spectral shape, requires the application of  quan- 
tification methods based either on curve-fitting o f  the 
spectra or on the use o f  calibration sets (for a discussion 
on quantification methods, see reference [17]). Band- 
fitting analysis of  the amide I spectral band (Table I) 
indicates that carbamylcholine does not affect the per- 
cent o f  at-helical structure in the AcChR protein, repre- 
sented by the band at 1656 cm -t and which accounts for 
-43% o f  the secondary structure in all cases. Carba- 
mylcholine, however, produces a significant decrease in 
extended structures such as the fl-pleated sheet at 1633 
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Fig. 2. infrared amide ! band region of  the original [A) and dceon- 
volved (B) spectra o f  reconstituted ACCllR vesicles in the absence 
(control, solid trace) and in the presence of  10 -2 M ofcarbamyleholine 
(discontinuous trace). The inset to (A) is a blown-up of  the indicated 
region of the amide I band to illustrate the progressive effects on the 
protein infrared spectra exerted by concentrations o f  the cholinergic 

agonist  ranging 10 -5 to 10 -s M. 

cm -~, from -48% in the absence of the e.gonist to -24% at 
10 -3 M carbamylcholine, concomitant with an increase 
in the band at 1642 cm -I. In spectra taken in D20, the 
latter band is usually assigned to non-ordered struc- 
tures, and is related to the band shifting to approxi- 
mately 1657 crn -~, overlapping with the 0t-helix, when 
the spectra are taken in H20 [9]. Other authors [26], 
however, have recently described another component 
band in H20 spectra at approximately 1640 cm -I, which 
does not shift in D20 and which they have assigned to 
"flexible loops'. In either case, the observations reported 
here seem to indicate that the interaction of  the cholin- 

Table  I 

Quant i ta t ive  estimation of  A c C h R  secondary structure and fitting parameters  obtained for the  major  components  of  the protein amide I band in 
the presence and  in the  absence of carbamyicholine = 

Carbamylchol ine  (M) Position of the Percent Gaussian Intensity ratio FWI-IH b ratio 
maxima (cm i) Structure Fraction (1655/1633) (1655/1633) 

0 (Control)  1655.1 43.26 0.53 0.971 0.863 

1639.9 48.64 0.35 

10 -5 1655.1 43.19 0.46 1.228 0.859 
1641.1 8.10 0.47 
t634.1 39.75 0.43 

10 -4 1656.0 42.23 0.44 1.430 0.900 
1641.9 18,12 0.44 
1633.1 "~ .5~ 0.39 

10"2 1656.1 43.22 0.49 1.880 0.920 
1640.5 28.06 0.27 
1633.2 24.20 0.41 

a The  minor  components  at 1680 and  1690 cm -~ have been omitted for simplicity. 
b F W H H ,  full-width at half-height. 
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Fig. 4. DSC thei~nograms of reconstituted AcChR v¢~icles in 10 mM 
, • phosphate buffer, pH 7.4, 100 taM NaNO~, obtained in tile absence 

I~50 q600 -0o - 5 - 4 - 3  -2 (upper trace) and in the presence (lower trace) of 10 -~ M ear- 
wavenumber, em '' log [agon~nt] 

Rg. 3. Temperature dependence of the infrared amide I band of 
reeonntitutext AcChR. Panel A ~hows the deconvolved amlde I band 
region of spectra recorded at the indicated temperatures during a 
heating cycle. The durauon ol" a heating cycle including data acquisi- 
tion and ~torage at each temperature, was approsimately 2.5 h. Panel 
B shows the temperature-induced changes in the full-width at half- 
heisht of the infrared amide I band, in the absence (control, triangles) 
and m the presence of 10 --~ M ofearbamylctlohne (circles). The mflec- 
t~on pomt~ m tile s~grnoid-like patterns are taken as the protein de- 
naturation temperature~ [ 14]. Panel C lllustrate~ the effect~ of increas- 
ing concentrations of carbamylcholine on the protein denaturation 

temperatures determined as m (B). 

ergie agonist with the AeChR, results in 'opening' or 
'loosening' the fl-sheet structure of  the protein which, 
according to most theoretical models proposed for the 
AcChR, forms primarily the extracellular portion of the 
protein [3,27], thus, including the agonist binding ~ite~. 
This seems consistent with the experimental low-resolu- 
tion model available on the AcChR [6], which predicts 
that AcChR desensitization implies structural rear- 
rangements in which the subunits switch to a less sym- 
metrical configuration, veith the overall changes being 
most pronounced in the synaptic and cytoplasmic re- 
gions of  the protein. 

Other authors have used FT-IR difference spectros- 
copy in H20 media to assess spectral changes due to 
agonist binding in AcChR native membranes [13,14] 
and in purified AcChR reconstituted into lipid vesicles 
[15]. These reports are somewhat contradictory to each 
other regarding the sign and relative magnitude of the 
spectral changes observed in the difference spectra 
[13,14]. The apparent  contradictions could perhaps be 
attributed to differences in the preparation of  their sam- 
pies, which need to be partly dried prior to the experi- 
ment, or to a different degree o f  water interference. In 
this regard, we described previously ~hat drying of  
AcChR samples in the absence of  adequate protecting 
agents may result in a complete loss of the characteristic 
cation channel function of the AcChR, which is accom- 
panied by a change in protein structure [16]. In any case, 
it should be noticed that while in difference spectros- 

bamyehohne. Transition ternperatmes e~tm)ated under these condi- 
tions (indicated by arrows)were 51.15 and 53.4°C, lespeetivcly. Ex- 

perimental error was less than 0.4°C. 

copy a qualitative view o f  the protein conformation 
changes is obtained, the decomposition o f  the amide 1 
band components  allows that  these changes can be 
quantitatively assigned to the secondary structural mo- 
tives present in the protein. On the other ha:~.d, differ- 
once spectroscopy gives a more precise account of what 
happens to narrow vibrational bands such as those re- 
suiting from the agonist molecule [14]. 

IR spectra were also taken at progressively higher 
temperatures to monitor AcChR thermal denaturation. 
The temperature-dependent changes observed in the de- 
¢onvolved amide I band :,Fig. 3A) are similar to those 
reported previously in native AeChR-rieh membranes 
from Torpedo [16], indicating a loss of  organized protein 
secondary substructures, such as the ca-helix (1656 era-1) 
or/ l -sheets  (1633 cm-~), and the appearance of  two 
components at 1620 and 1684 cna -~, which have been 
related to aggregation of thermally denatured proteins 
[28]. Monitoring of  thermal denaturation in the pres- 
ence of carbamylcholine induces a noticeable thermal 
stabilization o f  me protein, which is transiated in an 
increase o f  up to 2-3°C in the temperature correspond. 
ing to the inflection point of  the sigmoidal curve de- 
scribing the heat-induced loss of  protein structure, with 
respect to that  obtained in the absence of  the ligand 
(Fig. 3B). Such stabilizing effects of carbamylcholine 
are readily detectable at 10 -s M and become ma,~imal 
in the 10-~-10 -2 M range (Fig. 3C). 

The observations on the protein thermal stability 
made by FT-1R moniloring o f  the samples at different 
temperatures~ resemble those that can be obtained by 
DSC analysis of  similar reconstituted AcChR samples 
(Fig. 4). It should be noted, however, that heatipg of  the 
samples in the FT-IR and the DSC instruments is 
achieved differently (step-like jumps in temperature in 
the former and a continuous linear increase in the lat- 
ter). This causes that the absolute values o f  protein 
denaturation temperaturez obtained by those tech- 
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niques  can no t  be c o m p a r e d  since thermal  d e n a t u r a t i o n  
o f  comp lex  p ro te ins  such as the A c C h R  is a kinetically 
cont ro l led ,  i rreversible process  highly dependen t  on  the 
hea t ing  rate.  Nev,~rtheless, the D S C  d a t a  in Fig. 4 
(h igher  d e n a t u r a t i o n  t empe ra tu r e  in presence  o f  the ag- 
olaist) lends s u p p o r t  to the obse rva t ions  m a d e  by  F T - I R  
(Fig. 3B and  C) in that  desensi t iza t ion induced by car-  
bamylcho l ine  leads to a different  c o n f o r m a t i o n  o f  the 
A c C h R  pro te in  and  that  such c o n f o r m a t i o n  has  an  in- 
c reased  t he rma l  stability. 
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