Supplementary Material

G protein-coupled estrogen receptor activation by Bisphenol-A disrupts protection from apoptosis conferred by estrogen receptors ERα and ERβ in pancreatic beta cells

Ignacio Babiloni-Chust^{1,2,*}, Reinaldo S. dos Santos^{1,2,*}, Regla M. Medina-Gali^{1,2}, Atenea A. Perez-Serna^{1,2}, José-Antonio Encinar¹, Juan Martinez-Pinna^{3,1}, Jan-Ake Gustafsson^{4,5}, Laura Marroqui^{1,2} and Angel Nadal^{1,2}

1. Instituto de Investigación, Desarrollo e Innovación en Biotecnología Sanitaria de Elche (IDiBE), Universidad Miguel Hernández de Elche, Elche, Spain.

2. Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Spain. www.ciberdem.org

3. Departamento de Fisiología, Genética y Microbiología, Universidad de Alicante, Alicante, Spain.

4. Department of Cell Biology and Biochemistry, Center for Nuclear Receptors and Cell Signaling, University of Houston, Houston, TX, USA.

5. Department of Biosciences and Nutrition, Karolinska Institutet, Huddinge, Sweden

* Ignacio Babiloni-Chust and Reinaldo S. dos Santos contributed equally to this work.

Corresponding author

Angel Nadal, Instituto de Investigación, Desarrollo e Innovación en Biotecnología Sanitaria de Elche (IDiBE), Universidad Miguel Hernández de Elche, 03202, Elche, Spain.

E-mail: nadal@umh.es

Code	Name	Distributor	Sequence (5'to 3')
siCTRL	Allstars Negative Control siRNA	Qiagen, Venlo, Netherlands	Sequence not provided
Rat si <i>Gper1</i>	Rn_Gpr30_1 FlexiTube siRNA (SI01518335)	Qiagen, Venlo, Netherlands	Sequence not provided
Rat si <i>Gper1</i>	Rn_Gpr30_2 FlexiTube siRNA (SI01518342)	Qiagen, Venlo, Netherlands	Sequence not provided
Rat si <i>Era</i>	Esr1RSS302814 (3_RNAI)	Invitrogen, Pasley, UK	GCUACAAACCAAUGCACCAUCGAUA
Rat si <i>Erα</i>	Esr1RSS302815 (3_RNAI)	Invitrogen, Pasley, UK	GCUUAAUUCUGGAGUGUACACAUUU
Rat si <i>Erβ</i>	Esr2RSS303096	Invitrogen, Pasley, UK	CCCAAAUGUGCUAUGGCCAACUUCU
Rat si <i>Erβ</i>	Esr2RSS303097	Invitrogen, Pasley, UK	GCGUAGAAGGGAUUCUGGAAAUCUU
Human si <i>GPER1</i>	Hs_GPR30_1 FlexiTube siRNA (SI00430360)	Qiagen, Venlo, Netherlands	Sequence not provided
Human si <i>GPER1</i>	Hs_GPR30_1 FlexiTube siRNA (SI00430367)	Qiagen, Venlo, Netherlands	Sequence not provided
Human si <i>ERα</i>	HS ESR1 8 (SI02784101)	Qiagen, Venlo, Netherlands	Sequence not provided
Human si $ER\beta$	HS ESR2 6 (SI03083269)	Qiagen, Venlo, Netherlands	Sequence not provided

Supplementary Table 1. List of siRNAs used in this study.

Como	Forward	Reverse	
Gene	Sequence (5'-3')	Sequence (5'-3')	
Rat Esr1	CTGACAATCGACGCCAGAA	TCGTTACACACAGCACAGTAG	
Rat Esr2	TGGTCATGTGAAGGATGTAAGG	TTACGCCGGTTCTTGTCTATG	
Rat Gper1	TCTACACCATCTTCCTCTTCCC	ACAGGTCTGGGATAGTCATCTT	
Rat Gapdh	AGTTCAACGGCACAGTCAAG	TACTCAGCACCAGCATCACC	
Human ESR1	CAGATGGTCAGTGCCTTGTT	GTTGGTCAGTAAGCCCATCAT	
Human ESR2	TGGGCACCTTTCTCCTTTAG	AGGTGTGTTCTAGCGATCTTG	
Human GPER1	GTCTCTAAACTGCGGTCAGATG	AGCAATTCTGTGTGAGGAGTG	
Human β-actin	CTGTACGCCAACACAGTGCT	GCTCAGGAGGAGCAATGATC	

Supplementary Table 2. List of primers used in this study.

Target antigen	Antibody Name	Manufacturer and catalogue number	Species raised in	Dilution	RRID
unugen		(Cat no.)	i uiseu ili		
ERα	Estrogen Receptor alpha Monoclonal Antibody	Invitrogen; Cat no. MA5-13191	Mouse, monoclonal	1:1000 (WB)	AB_10986080
ERα	Estrogen Receptor alpha Monoclonal Antibody (SP1)	Thermo Fisher Scientific; Cat no. MA5-14501	Rabbit, monoclonal	1:200 (PLA)	AB_10981779
ERβ	Estrogen Receptor Beta Monoclonal Antibody	Invitrogen; Cat no. MA5-24807	Mouse, monoclonal	1:2000 (WB) and 2 mg/ml (IP)	AB_2717280
ERβ	Estrogen Receptor beta Monoclonal Antibody (14C8)	Thermo Fisher Scientific; Cat no. MA1-23217	Mouse, monoclonal	1:2000 (PLA)	AB_558839
GPER	Anti-G- protein coupled receptor 30 antibody	Abcam; Cat no. Ab-39742	Rabbit, polyclonal	1:1000 (WB)	AB_1141090
α-Tubulin	Monoclonal Anti- αTubulin antibody	Sigma; Cat no. T9026	Mouse, monoclonal	1:5000 (WB)	AB_477593
GAPDH	GAPDH (D16H11) XP Rabbit mAb antibody	Cell Signaling Technology; Cat no. 5174	Rabbit, monoclonal	1:1000 (WB)	AB_10622025
β-Actin	β-Actin (D6A8) Rabbit mAb antibody	Cell Signaling Technology; Cat no. 8457	Rabbit, monoclonal	1:1000 (WB)	AB_10950489
Goat anti- mouse IgG	Goat Anti- Mouse IgG (H+L) HRP Conjugate antibody	Bio-rad; Cat no. 170-6516	Goat, Polyclonal	1:5000 (WB)	AB_11125547

Supplementary Table 3. List of antibodies used in this study.

Goat anti- rabbit IgG	Goat Anti- Rabbit IgG (H+L) HRP Conjugate antibody	Bio-rad; Cat no. 170-6515	Goat, Polyclonal	1:5000 (WB)	AB_11125142
Goat anti- rabbit IgG	Normal Rabbit IgG antibody	Cell Signaling Technology; Cat no. 2729	Goat, Polyclonal	Used for IP	AB_1031062

Supplementary Fig. 1 E2 and BPA have different effects on beta cell viability. INS-1E (a,c) and EndoC- β H1 cells (b,d) were treated with vehicle (white bars), E2 (grey bars) or BPA (red bars) for 48 h. Cell viability was evaluated by MTT assay. Data are shown as means \pm SEM of 5 independent experiments. * $p \le 0.05$, ** $p \le 0.01$ and *** $p \le 0.001$ vs Vehicle. One-way ANOVA.

Supplementary Fig. 2 Involvement of oxidative stress in BPA-induced apoptosis. (a-c) mRNA expression of *Sod2* (a), *Gpx4* (b), and *Cat* (c) in INS-1E cells treated with vehicle (white bars) or BPA 1 nmol/l (red bars) for 24 h. mRNA expression was measured by qRT-PCR and normalised to the housekeeping gene *Gapdh*, and it is shown as fold vs vehicle. INS-1E (d) and EndoC- β H1 (e) cells were treated with vehicle (white bars) or BPA 1 nmol/l (red bars) in the absence or presence of N-acetylcysteine (NAC; 3 mmol/l) for 24 h. Oxidative stress was measured by oxidation of the fluorescent probe DCF and normalized by total protein. INS-1E (f) and EndoC- β H1 (g) cells were treated with vehicle (white bars) or BPA 1 nmol/l (red bars) in the absence or presence of NAC 3 mM for 24 h. Apoptosis was evaluated using Hoechst 33342 and propidium iodide staining. Data are shown as means ± SEM of 3-6 independent experiments. (a-c) *p≤0.05 and **p≤0.01, by two-tailed Student's *t* test. (d-g) **p≤0.01 and ***p≤0.001 vs the respective vehicle; ##p≤0.01 and ###p≤0.001 as indicated by bars. Two-way ANOVA.

Supplementary Fig. 3 ER α , ER β and GPER expression in INS-1E and EndoC- β H1 cells. mRNA expression of ER α , ER β and GPER in INS-1E (**a**) and EndoC- β H1 cells (**b**). mRNA expression was measured by qRT-PCR and normalised to the housekeeping genes *Gapdh* (**a**) and β -actin (**b**). Data are shown as fold-change of ER α expression (considered as 1). (**c**) Protein expression of ER α , ER β and GPER in INS-1E (left panel) and EndoC- β H1 cells (right panel) was measured by western blot.

Supplementary Fig. 4 GPER activation induces apoptosis. (a) INS-1E cells were treated with vehicle (white bars) or GPER agonist G1 (blue bars) for 24 h. Apoptosis was evaluated using Hoechst 33342 and propidium iodide staining. (b,c) Densitometry analysis of immunoblots shown in Fig. 2e (b) and Fig. 2h (c). Values were normalised by α -tubulin (b) or β -actin (c) and then by the value of siCTRL-transfected vehicle-treated cells of each experiment (considered as 1). Data are shown as means \pm SEM of 4-6 independent experiments. (a) * $p \le 0.05$, ** $p \le 0.01$ and *** $p \le 0.001$ vs Vehicle, by one-way ANOVA. (b,c) * $p \le 0.05$ and *** $p \le 0.001$ vs the respective siCTRL. ## $p \le 0.01$ as indicated by bars. Two-way ANOVA.

Supplementary Fig. 5 PPT effect on viability and confirmation of ERa knockdown. INS-1E (a) and EndoC- β H1 cells (b) were treated with vehicle or ERa agonist PPT (1 nmol/l in b) for 24 h. Apoptosis was evaluated using Hoechst 33342 and propidium iodide staining. (c-f) INS-1E cells were transfected with siCTRL or with a siRNA targeting ERa (si*Era*). Cells were treated with vehicle (white bars) or BPA 1 nmol/l (red bars) for 24 h. Protein expression was measured by western blot. Representative images of three independent experiments are shown (c) and densitometry results are presented for different ERa variants, namely ERa 66 (d), ERa 46 (e) and ERa 36 (f). Values were normalised by α -tubulin (α -tub) and then by the value of siCTRL-transfected vehicle-treated cells of each experiment (considered as 1). (g,h) Densitometry analysis of immunoblots shown in Fig. 3d (g) and Fig. 3g (h). Values were normalised by α -tubulin or β -actin and then by the value of siCTRL-transfected cells of each experiment (considered as 1). The value of siCTRL-treated cells of each experiment (considered as 1). Using the value of siCTRL-treated cells of each experiment (considered as 1). Values were normalised by α -tubulin or β -actin and then by the value of siCTRL-transfected cells of each experiment (considered as 1). Values were normalised by α -tubulin or β -actin and then by the value of siCTRL-transfected cells of each experiment (considered as 1). Data are shown as means \pm SEM of 3-4 independent experiments. (d-h) * $p \le 0.05$, ** $p \le 0.01$, *** $p \le 0.001$ vs the respective siCTRL, by two-way ANOVA. PPT, propylpyrazoletriol.

Supplementary Fig. 6 DPN effect on viability and confirmation of ER β knockdown. INS-1E (a) and EndoC- β H1 cells (b) were treated with vehicle or ER β agonist DPN (1 nmol/l in b) for 24 h. Apoptosis was evaluated using Hoechst 33342 and propidium iodide staining. (c-f) INS-1E cells were transfected with siCTRL or with a siRNA targeting ER α (si*Er* β). Cells were treated with vehicle (white bars) or BPA 1 nmol/l (red bars) for 24 h. Protein expression was measured by western blot. Representative images of three independent experiments are shown (c) and densitometry results are presented for different ER β variants, namely ER β 49 (d), ER β 35 (e) and ER β 30 (f). Values were normalised by α -tubulin (α -tub) and then by the value of siCTRL-transfected vehicle-treated cells of each experiment (considered as 1). (g,h) Densitometry analysis of immunoblots shown in Fig. 4c (g) and Fig. 4f (h). Values were normalised by α -tubulin or β -actin and then by the value of siCTRL-transfected cells of each experiment (considered as 1). The value of siCTRL-transfected cells of each experiment (considered as 1). Using the value of siCTRL-treated cells of each experiment (considered as 1). Calues were normalised by α -tubulin or β -actin and then by the value of siCTRL-transfected cells of each experiment (considered as 1). Data are shown as means \pm SEM of 3-6 independent experiments: (d-h) * $p \le 0.05$, ** $p \le 0.01$, *** $p \le 0.001$ vs the respective siCTRL, by two-way ANOVA. DPN, diarylpropionitrile.

Supplementary Fig. 7 GPER requires ER α and ER β to induce apoptosis. (a) Densitometry analysis of immunoblots shown in Fig. 5c. Values were normalised by α tubulin and then by the value of siCTRL-transfected vehicle-treated cells of each experiment (considered as 1). (b) G1-induced apoptosis data from Fig. 5d are presented as apoptotic index. (c-e) Related to Fig. 5i. Protein expression was measured by western blot. Representative images of four independent experiments are shown (c) and densitometry results are presented for ER α (d) or ER β (e). (f) G1-induced apoptosis data from Fig. 5i are presented as apoptotic index. Data are shown as means \pm SEM of 4 independent experiments. (a,d,e) * $p \le 0.05$, ** $p \le 0.01$, *** $p \le 0.001$ vs the respective siCTRL, by two-way ANOVA. (b) * $p \le 0.05$, by two-tailed Student's *t* test. (f) * $p \le 0.05$ and ** $p \le 0.01$ vs siCTRL, by one-way ANOVA.

Supplementary Fig. 8 Molecular dynamics simulation of homo- and heterodimers of hLBD-ER. Analysis of the trajectory of the ligands bound to the closed cavity of the LBD-ER for homodimers α/α (a), homodimers β/β (b) and heterodimers α/β (c).