Gene	Forward primer (5'-3')	Reverse primer (5'-3')
product		
Hmox1	CACAGATGGCGTCACTTCGTC	GTGAGGACCCACTGGAGGAG
Nqo1	GGTAGCGGCTCCATGTACTC	CATCCTTCCAGGATCTGCAT
Gclc	TTACCGAGGCTACGTGTCAGAC	TATCGATGGTCAGGTCGATGTC
Gclm	AATCAGCCCCGATTTAGTCAGG	CCAGCGTGCAACTCCAAGGAC
II1b	CTGGTGTGTGACGTTCCCATTA	CCGACAGCACGAGGCTTT
Tnf	CATCTTCTCAAAATTCGAGTGACAA	TGGGAGTAGACAAGGTACAACCC
Il6	CCTACCCCAATTTCCAATGCT	TATTTTCTGACCACAGTGAGGAATG
<i>II10</i>	GTAGAAGTGATGCCCCAGGC	GGGGAGAAATCGATGACAGC
Il4	GTAGAAGTGATGCCCCAGGC	GGGGAGAAATCGATGACAGC
Ifng	ATGAACGCTACACACTGCATC	CCATCCTTTTGCCAGTTCCTC
Cpt1a	CTCCGCCTGAGCCATGAAG	CACCAGTGATGATGCCATTCT
Acox1	TCGAAGCCAGCGTTACGAG	TCGAAGCCAGCGTTACGAG
<i>Cd36</i>	AGATGACGTGGCAAAGAACAG	CCTTGGCTAGATAACGAACTCTG
Acaca	ATGGGCGGAATGGTCTCTTTC	TGGGGACCTTGTCTTCATCAT
Fasn	GGAGGTGGTGATAGCCGGTAT	TGGGTAATCCATAGAGCCCAG
Actb	TCCTTCCTGGGCATGGAG	AGGAGGAGCAATGATCTTGATCTT
Gapdh	CGACTTCAACAGCAACTCCCACTCTTCC	TGGGTGGTCCAGGGTTTCTTACTCCTT
Тbр	TGCACAGGAGCCAAGAGTGAA	CACATCACAGCTCCCCACCA

Supplemental Material

Supplemental Table 1. Mouse primers used for qRT-PCR.

Gene product	Forward primer (5'-3')	Reverse primer (5'-3')
HMOX1	TGCTCAACATCCAGCTCTTTGA	GCAGAATCTTGCACTTTGTTGC
ACTA2	GTGTTGCCCCTGAAGAGCAT	GCTGGGACATTGAAAGTCTCA
COL1A1	GAGGGCCAAGACGAAGACATC	CAGATCACGTCATCGCACAAC
АСТВ	TCCTTCCTGGGCATGGAG	AGGAGGAGCAATGATCTTGATCTT
GAPDH	CTCTCTGCTCCTCCTGTTCGAC	TGAGCGATGTGGCTCGGCT
ТВР	TGCACAGGAGCCAAGAGTGAA	CACATCACAGCTCCCCACCA

Supplemental Table 2. Human primers used for qRT-PCR of LX-2 cells.

Supplemental Figure 1. The transcriptional activity of NRF2 is stimulated by PHAR in hepatocytes and impacts on the regulation of lipid metabolism. Immortalized hepatocytes were treated with 10 μ M of PHAR for indicated time periods. A, representative immunoblots of NRF2, HO-1, NQO1 and VCL as a loading control. Black arrow indicates NRF2 specific band. B, densitometric quantification of NRF2, HO-1 and NQO1 protein levels from representative immunoblots from A, expressed as a ratio of VCL. Data are mean \pm S.D. (*n*=3). C-D, mRNA levels of *Hmox1*, *Nqo1*, *Gclc*, *Gclm*, *Cd36*, *Cpt1a* and *Acox1*, determined by qRT-PCR and normalized by the geometric mean of *Gapdh*, *Tbp*, and *Actb* levels. Data are mean \pm S.D. (*n*=4). * p<0,5; **p<0,01; ***p<0.001 *vs* time 0 according to a one-way ANOVA followed by Bonferroni post-hoc test.

Supplemental Figure 2. PHAR reduces the inflammatory response in mouse Kupffer cells stimulated with LPS. Kupffer cells were pre-treated with 10 μ M of PHAR for 8 h. Then, cells were treated with 100 ng/ml of LPS for 4h. A, representative immunoblots of NRF2, HO-1, pre-IL1 β , and β -actin as a loading control. Black arrow indicates NRF2 specific band. B, densitometric analysis of NRF2, HO-1 and pre-IL1 β protein levels from representative immunoblot from A, expressed as a ratio of β -actin. Data are mean \pm S.D. (*n*=3). C, mRNA levels of *Hmox1*, *Nqo1*, *II1b*, *II6* and *Tnf* were determined by qRT-PCR and normalized by the geometric mean of *Gapdh*, *Tbp*, and *Actb* levels. Data are mean \pm S.D. (*n*=4). *p<0.05; **p<0.01; ***p<0.001 *vs* vehicle or LPS according to a two-way ANOVA followed by Bonferroni post-hoc test.

Supplemental Figure 3. PHAR protects against TGF- β -induced fibrosis in LX-2 human stellate cells. LX2 cells maintained in low-serum were treated with 10 μ M of PHAR or 5ng/ml of TGF- β for 16 h. A, representative immunoblots of NRF2, HO-1, α -SMA, COL1A1 and GAPDH as a loading control. Black arrow indicates NRF2 specific band. B, densitometric analysis of representative immunoblots from A, expressed as a ratio of GAPDH. Data are mean \pm S.D. (*n*=3). C, mRNA levels of *HMOX1, ACTA2* and *COL1A1* were determined by qRT-PCR and normalized by the geometric mean of *GAPDH, TBP*, and *ACTB* levels. Data are mean \pm S.D. (*n*=4). *p<0.05; **p<0.01; ***p<0.001 *vs.* vehicle or TGF- β according to a two-way ANOVA followed by Bonferroni post-hoc test. D, MTT assay was performed to assess cell viability of LX-2-treated cells. Data are mean \pm S.D. (*n*=3). *p<0.05 *vs.* vehicle according to a two-way ANOVA followed by Bonferroni post-hoc test.