Silibinin is a suppressor of the metastasis-promoting transcription factor ID3

Sara Verdura a,b, José Antonio Encinar c, Alexei Gratchev d, Àngela Llop-Hernández a,b, Júlia López a,b, Eila Serrano-Hervás a,b, Eduard Teixidor a,b, Eugeni López-Bonet b,g, Begoña Martín-Castillo b,h, Vicente Micol c,i, Joaquim Bosch-Barrera c,i,j,1, Elisabet Cuyàs a,b,1, Javier A. Menéndez a,b,1,*

a Program Against Cancer Therapeutic Resistance (ProCURE), Catalan Institute of Oncology, Girona, 17007, Spain
b Metabolism and Cancer Group, Girona Biomedical Research Institute (IDIBGI), Girona 17190, Spain
c Institute of Research, Development and Innovation in Health Biotechnology of Elche (IDIBIE), Universitat Miguel Hernández (UMH), Elche 03202, Spain
d Laboratory for Tumor Stromal Cell Biology, Institute of Carcinogenesis, Nikolai Nikolajewitsch (N.N.) Blokhin National Medical Research Center of Oncology, Moscow 115478, Russia
e Precision Oncology Group (OncoGir-Pro), Girona Biomedical Research Institute (IDIBGI), Girona 17190, Spain
f Medical Oncology, Catalan Institute of Oncology, Girona, 17007, Spain
g Department of Anatomical Pathology, Dr. Josep Trueta Hospital of Girona, Girona 17007, Spain
h Unit of Clinical Research, Catalan Institute of Oncology, Girona, 17007, Spain
i CIBER Fisiopatología de la Obesidad y la Nutrición (CIBEROBN), Instituto de Salud Carlos III (ISCIII), Madrid, 28029, Spain
j Department of Medical Sciences, Medical School, University of Girona, Girona, Spain

ARTICLE INFO

Keywords:
Lung cancer
ID3
Milk thistle
Silibinin
Bone morphogenic proteins
SMAD

ABSTRACT

Background: ID3 (inhibitor of DNA binding/differentiation-3) is a transcription factor that enables metastasis by promoting stem cell-like properties in endothelial and tumor cells. The milk thistle flavonolignan silibinin is a phytochemical with anti-metastatic potential through largely unknown mechanisms.

Hypothesis/purpose: We have mechanistically investigated the ability of silibinin to inhibit the aberrant activation of ID3 in brain endothelium and non-small cell lung cancer (NSCLC) models.

Methods: Bioinformatic analyses were performed to investigate the co-expression correlation between ID3 and bone morphogenic protein (BMP) ligands/BMP receptors (BMPRs) genes in NSCLC patient datasets. ID3 expression was assessed by immunoblotting and qRT-PCR. Luciferase reporter assays were used to evaluate the gene sequences targeted by silibinin to regulate ID3 transcription. In silico computational modeling and LanthaScreen TR-FRET kinase assays were used to characterize and validate the BMPR inhibitory activity of silibinin. Tumor tissues from NSCLC xenograft models treated with oral silibinin were used to evaluate the in vivo anti-ID3 effects of silibinin.

Results: Analysis of lung cancer patient datasets revealed a top-ranked positive association of ID3 with the BMP9 endothelial receptor ACVRL1/ALK1 and the BMP ligand BMP6. Silibinin treatment blocked the BMP9-induced activation of the ALK1-phospho-SMAD1/5-ID3 axis in brain endothelial cells. Constitutive, acquired, and adaptive expression of ID3 in NSCLC cells were all significantly downregulated in response to silibinin. Silibinin blocked ID3 transcription via BMP-responsive elements in ID3 gene enhancers. Silibinin inhibited the kinase activities of BMPRs in the micromolar range, with the lower IC50 values occurring against ACVRL1/ALK1 and

Abbreviations: bHLH, basic helix-loop-helix; BBB, blood-brain barrier (BBB); BMP, bone morphogenic protein; BMPR, bone morphogenic protein receptor; BRE, BMP-responsive element; CSG, Cancer Stem Cell; DMSO, Dimethyl sulfoxide; ECS, Endothelial cells; FBS, Fetal bovine serum; HRP, horseradish peroxidase; IPSCS, induced pluripotent stem cells; ID, Inhibitor of DNA binding/differentiation; LUAD, lung adenocarcinoma; MEC, Microvascular endothelial cell; NSCLC, non-small cell lung cancer; PBS, phosphate buffered saline; QRT-PCR, quantitative real-time polymerase chain reaction; SDS-PAGE, sodium dodecyl sulfate polyacrylamide gel electrophoresis; SMAD, Mothers against decapentaplegic homolog; TBST, Tris-buffered saline containing Tween.

* Corresponding author.
E-mail address: jmendez@idibgi.org (J.A. Menéndez).

1 J.A.M., E.C., and J. B-B. share senior authorship

https://doi.org/10.1016/j.phymed.2024.155493
Received 21 November 2023; Received in revised form 31 January 2024; Accepted 26 February 2024
Available online 6 March 2024
0944-7113/© 2024 The Author(s). Published by Elsevier GmbH. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
Introduction

The inhibitor of DNA-binding/differentiation (ID) proteins ID1–4 are transcriptional regulators that control cell differentiation by interfering with the DNA-binding activity of basic helix-loop-helix (bHLH) transcription factors (Lasorella et al., 2014; Perk et al., 2005; Roschger and Cabrele, 2017). ID proteins transcriptionally synchronize the determination of cell fate with the appropriate extracellular interactions in the niche microenvironment, thereby inhibiting differentiation and maintaining the self-renewal and multipotency capacity of stem/progenitor cells during development (Niola et al., 2012). ID protein expression is largely silent in most adult tissues, but can be reactivated in various disease processes such as diabetes, Diamond-Blackfan anemia, Rett syndrome, and cancer (Ling et al., 2014; Wang and Baker, 2015). ID proteins are highly expressed in virtually all human tumors, where their presence in the cancer cell compartment and/or in the tumor vasculature is associated with an aggressive phenotype and a poor clinical outcome (Anido et al., 2010; Castanon et al., 2013; Lee et al., 2004; Lyden et al., 1999; Maw et al., 2008; Ponz-Sarvise et al., 2011; Schindl et al., 2003; Schoppmann et al., 2003; Sharma et al., 2012). ID gene expression confers tumor-initiating capacity and chemoresistance to certain subpopulations of cancer stem cell (CSC)-like cells in the context of primary tumorigenesis and during the early stages of metastatic colonization (Gupta et al., 2007; Iavarone and Lasorella, 2006; Ke et al., 2018; Stankic et al., 2013). ID proteins can exert extrinsic actions to promote metastatic dissemination by remodeling the tumor microenvironment and promoting the activation and recruitment of endothelial cells (ECs) to support tumor angiogenesis at the primary and metastatic sites (Benezra, 2011; Gao et al., 2008). Activation of IDs further contributes to the stemness of ECs, a phenomenon that may facilitate not only the passage of brain metastatic cells across the blood-brain barrier (BBB), but also the reorganization of the cerebral microvasculature in reactive niches of primary and secondary brain tumors (Das and Felty, 2014,2015; Das et al., 2015, 2022; Perez et al., 2023: Perez and Felty, 2022).

Disrupting the ID-driven cancer cell-intrinsic and extrinsic regulatory activities may provide additive or even synergistic anti-metastatic effects. However, transcription factors such as ID proteins are notoriously difficult to target with small molecule inhibitors (Nair et al., 2014; Wojnarowicz et al., 2021). First, with the exception of Burkitt’s lymphoma (Richter et al., 2012), mutations or genomic rearrangements in the ID genes or their promoters are rarely found in most human malignancies. Second, although the feasibility and anti-tumor effects of systemic ID protein targeting have been supported by using siRNA/anti-sense oligonucleotides delivery systems and cell permeable peptides that target ID proteins for degradation (Mern et al., 2010), the effectiveness of directly inactivating ID proteins might depend on the largely unknown biochemical nature of the ID proteins-containing transcriptional complexes. Third, although a valuable alternative is to target ID gene expression rather than ID function, one should acknowledge that cancer-associated reactivation of IDs is due to the convergence of numerous and diverse signaling cascades (e.g., MAPK kinase, Myc, Src, FLT3, VEGF, Wnt, Notch) on the ID gene promoters (Nair et al., 2014). Although a small molecule pan-ID antagonist (AGX51) has been shown to phenocopy the effects of ID1 and ID3 gene loss to regress therapy-resistant tumor growth and suppress metastatic colonization (Wojnarowicz et al., 2019, 2021), targeted pharmacologic inhibition of ID3 has been unavailable, even in preclinical cancer models. The bone morphogenetic protein (BMP) signaling pathway, the major upstream regulator of ID expression in cell biology, may provide an alternate therapeutic path to target ID proteins including ID3. BMPs mediate cancer cell fate decisions, including proliferation, survival, and self-renewal cues, through transcriptional regulation of ID1/3 (Hayashi et al., 2016; Hollnagel et al., 1999; Kowanetz et al., 2004; Ying et al., 2003). Inhibition of BMP signaling decreases cell growth, induces cell death, and reduces stemness of cancer cells by down-regulating ID1/3 proteins. Several generations of small-molecule ATP-competitive inhibitors with varying affinity for the kinase domain of BMP type I and type II receptors (BMPR), such as dorsomorphin, LDN-193,189, DMH-2, and JL-5, have been shown to act predominantly as ID1 (but not ID3) inhibitors (Langenfeld et al., 2013a).

The flavonolignan silibinin, the major bioactive component of silymarin extract from *Silybum marianum* (milk thistle seeds), is a phytochemical with a well-established chemopreventive capacity to suppress tumor initiation and progression, but also with therapeutic potential to target metastatic progression (Bosch-Barrera and Menendez, 2015; Bosch-Barrera et al., 2017, 2021; Deep and Agarwal, 2010; Mateen et al., 2013). Pre-clinical studies have repeatedly demonstrated the ability of silibinin to suppress signaling pathways involved in metastasis-related phenomena including adhesion, motility, invasiveness, and epithelial-to-mesenchymal transition (EMT) (Cuff et al., 2013a; Verdura et al., 2021, 2022) by targeting not only not only cancer cells but also supporting components of the tumor microenvironment such as ECs (Deep and Agarwal, 2013; Deep et al., 2017; Mirzaaghaei et al., 2019). Therapeutic interventions with a silibinin-based nutraceutical (Legamil®) have demonstrated the groundbreaking activity of silibinin against established brain metastases (BM), but not against extracranial disease progression, in heavily pretreated non-small cell lung cancer (NSCLC) patients (Bosch-Barrera et al., 2017; Priego et al., 2018). As previously demonstrated in models of ischemic stroke (Wang et al., 2012), the significant improvement in overall survival of silibinin-treated NSCLC patients was accompanied by a marked reduction or prevention of tumor-associated vasogenic edema in BM lesions (Bosch-Barrera et al., 2017; Priego et al., 2018). Vasogenic edema result from the breakdown of the blood-brain barrier (BBB) (Solar et al., 2022), which composed of interacting cells such as ECs, pericytes, and astrocytes, strongly indicating that the anti-BM activity of silibinin may involve a reprogramming of BM-associated non-tumoral cell types (Priego and Valiente 2019; Wasilewski et al., 2017).

Here, we investigated the mechanistic ability of silibinin to specifically target the expression of the largely undruggable metastasis-promoting ID3 transcription factor in brain ECs and NSCLC cells. Combining experimental efforts with cultured ECs and NSCLC cell models, luciferase reporter assays with regulatory sequences of the ID3 gene, in *silico* computational studies using docking and molecular dynamics simulations, and in vitro studies with purified BMPR kinases, we now present the first evidence that silibinin represses both the inducible expression of ID3 in the brain vasculature as well as the constitutive, acquired and adaptive expression of ID3 in therapy-resistant NSCLC cells.

Materials and methods

ID3 gene correlations in lung cancer patients

Gene-level expression files were downloaded from the cBioportal for...
Cell lines and culture conditions

Human NSCLC cell lines A549 (ATCC CCL-185), H460 (ATCC HTB-177), H1993 (ATCC CRL-5909), and H1975 (ATCC CRL-5908), and HEK293T (ATCC CRL-3216) were obtained from the ATCC (Manassas, VA, USA). The Human Cerebral Microvascular Endothelial Cell (MEC) line hCMEC/D3 (#CLU512-A) was obtained from Cedarlane Laboratories Limited/Tebu-Bio (Burlington, NC, USA). H3122 (CVC5160) and H2228 (ATCC CRL-5935) cell lines, harboring the E13:A20 and E6a/b:A20 variants of the EML4-ALK fusion, respectively, were rendered resistant to crizotinib (H3122/CR and H2228/CR) by incremental and continuous exposure to crizotinib, as previously described (Kim et al., 2013; Verdura et al., 2022; Yamaguchi et al., 2014). Parental PC-9 (RRID:CVCL_B260) cells harboring an EGFR activating mutation (Δ746–750) were obtained from the IBL Cell Bank (Gunma, Japan) and were rendered resistant to erlotinib (PC-9/ER) by incremental and continuous exposure to erlotinib, as described (Vazquez-Martín et al., 2013).

A549, PC-9, PC-9/ER, and HEK293T cells were routinely expanded in Dulbecco’s modified Eagle’s medium (DMEM, Gibco) supplemented with 10 % heat-inactivated fetal bovine serum (FBS; Linus), 1 % l-glutamine, 1 % sodium pyruvate, 50 IU/ml penicillin, and 50 μg/ml streptomycin. H460, H1993, H1975, H3122, H3122/CR, H2228, H2228/CR were routinely expanded in RPMI 1640 (Gibco) supplemented with 10 % heat-inactivated FBS, 1 % l-glutamine, 50 μg/ml penicillin, and 50 μg/ml streptomycin. hCMEC/D3 cells were grown in EGM™–2 MV MEC Growth Medium-2 BulletKit™ containing EBM™-2 Basal Medium and EGM™-2 MV MEC Growth Medium SingleQuots™ supplements (#H3CC-3202) required for growth of MECs (Lonza) at the following concentrations: 0.025 % (v/v) rhEGF, 0.025 % (v/v) VEGF, 0.025 % (v/v) IGF, 0.1 % (v/v) rhFGF, 0.1 % (v/v) gentamicin, 0.1 % (v/v) ascorbic acid, 0.04 % (v/v) hydrocortisone, and 2.5 % (v/v) FBS as specified by Weksler et al. (2005). hCMEC/D3 cells were seeded onto tissue culture flasks were precoated with 1/100 collagen type I solution.

All cells were grown at 37 °C in a humidified atmosphere with 5 % CO2 and were in the logarithmic growth phase at the beginning of the experiments. Cell lines were authenticated by STR profiling, both per tissue culture flasks were precoated with 1/100 collagen type I solution. Cell lines were passaged by starting a low-passage cell stock every month until 2–3 months after resuscitation. Cell lines were screened for mycoplasma contamination using a PCR-based method for Mycoplasma detection prior to experimentation and were intermittently tested thereafter.

Drugs, reagents, and antibodies

Silibinin (Cat. #S0417; ≥ 98 % purity, HPLC area%) was purchased from Sigma-Aldrich (Madrid, Spain), BMP4 (Cat. #120–05), BMP6 (Cat. #120–06), TGFβ1 (Cat. #AF-100–21C-B), and GDF2 (BMP9; Cat. #120–07–1MG) human recombinant proteins were purchased from PeproTech® EC, Ltd (London, UK). Rabbit monoclonal antibody against ID3 (Cat. #BCH-4/#3–9) and ID1 (Cat. #BCH-1/#195–14) were purchased from BioCheck, Inc. (San Francisco, CA, USA). Rabbit polyclonal antibodies against SMAD2/3 (Cat. #3102), phospho-SMAD2 (Ser465/467)/SMAD3 (Ser423/425) (Cat. #9510), SMAD1 (Cat. #D59D7), SMAD5 (Cat. #D4G2), and SMAD1/5 (Ser463/465) (Cat. #41D10) were purchased from Cell Signaling Technology (Danvers, MA, USA). Mouse monoclonal antibodies against GAPDH (Cat. #60,004–1-Ig) and β-actin (Cat. #66,009–1-lg) were purchased from Proteintech (Rosemont, IL, USA). Dorsomorphin (Cat. #S7840) and K02288 (Cat. #S7359) were purchased from Selleckchem (Houston, TX, USA). The Dual-Glo Luciferase Assay System (Cat. #E2920) and the FuGENE® Transfection Reagent (Cat. #E2691) were purchased from Promega Corporation (Madison, WI, USA).

MTT-based cell viability assays

The concentration range of cytostatic versus cytotoxic effects of silibinin was assessed by MTT-based cell viability assays involving 72 h exposure to graded concentrations of silibinin as described elsewhere (Bosch-Barrera et al., 2021). The sensitivity of cell lines to silibinin was expressed as the concentration required to reduce cell viability by 50 % (IC50). Since the percentage of control absorbance was considered to be the surviving fraction of cells, the IC50 value was defined as the silibinin concentration that produced a 50 % reduction in control absorbance and was estimated using non-linear regression analyses of dose-response curves.

Luciferase assays

Functional identification and cloning of the ID3 gene enhancers (ECR1 and ECR2) and ID3 promoter regulatory sequences (BMP response element [BRE], CAGA boxes, bipartite BRE-CAGA enhancer elements) in ID3 reporter plasmids has been reported previously (Nurazgul et al., 2015; Shepherd et al., 2008). HEK293T cells were transfected with ID3 reporter plasmids using the FuGENE® Transfection Reagent according to the manufacturer’s instructions. Briefly, cells were seeded 1 day prior to transfection at a density of 5 × 10^5 cells per well in 6-well plates. For all reporter gene assays, 4 μg of the luciferase reporter plasmid was co-transfected with 40 ng of the Renilla reporter plasmid. Twenty-four hours after transfection, the cells were harvested and re-plated in a white 96-well plate that had been pre-coated with 0.1 % gelatin. The next day, the cells were stimulated with TGFβ, BMP4, BMP6 or BMP9 (all of them at 10 ng/ml) in the absence or presence of silibinin (100 μM/l), dorsomorphin (5 μM/l) or K02288 (1 μM/l) in medium containing 2 % FBS or left untreated, as indicated. All conditions were performed in duplicate. After 24 h of treatment, luciferase and Renilla activities were measured using the Dual-Glo Luciferase Assay System according to the manufacturer’s instructions. Luminescence measurements were performed using a Cytation 5 plate reader (Biotek). The luciferase activity was first normalized to the Renilla activity and then referenced to the backbone of the corresponding empty plasmid.

Immunoblotting

Cells were seeded in 6-well plates at 200,000 – 250,000 cells/well and allowed to grow overnight in maintenance cell culture media containing 10 % FBS. Following overnight serum starvation, cells were cultured in the absence or presence of varied concentrations of silibinin in the corresponding media containing 2 % FBS (24 – 48 h). Cells were then washed with ice-cold phosphate buffered saline (PBS), and scraped immediately after adding 30 – 75 μl of 2 % SDS, 1 % glycerol, and 5 mM/l Tris–HCl, pH 6.8. The protein lysates were collected in 1.5 ml microcentrifuge tubes and samples were sonicated for 1 min (under ice water bath conditions) with 2 s sonication at 2 s intervals to fully lyse cells and reduce viscosity. Protein content was determined by the Bradford protein assay (Bio-Rad, Hercules, CA). Sample buffer was added and extracts were boiled for 4 min at 100 °C. Equal amounts of protein were eletrophoresed on SDS-PAGE gels, transferred to nitrocellulose membranes and incubated with primary antibodies, followed by incubation with a horseradish peroxidase-conjugated secondary antibody and chemiluminescence detection. β-actin and GAPDH were employed as controls for protein loading. Densitometric values of protein bands were quantified using densitometry (Image J software, which can be readily
Quantitative real-time polymerase chain reaction (qRT-PCR)

Total RNA was extracted from cells using the RNA Plus Kit (Macherey-Nagel, Germany) to the manufacturer’s instructions. Two micrograms of total RNA was reverse-transcribed to cDNA using the High-Capacity cDNA Reverse Transcription Kit (Applied Biosystems, Waltham, MA). The abundance of ID3 (Hs00171409_m1) and GAPDH (Hs99999903_m1) was evaluated in technical replicates relative to the housekeeping genes ID3 (Hs99999905_m1) using an Applied Biosystems QuantStudio™ 7 PCR System with an automated baseline and threshold cycle detection. The transcript abundance was calculated using the comparative C_{\text{t}} method and presented as relative quantification (RQ) or fold-change, as specified.

Docking calculations, molecular dynamics (MD) simulations, and binding free energy analysis

Docking calculation, MD simulations, molecular docking score ΔG (Gibbs free binding energy), binding affinity (Kd), and molecular mechanics Poisson–Boltzmann surface area (MM/PSA) calculations to in silico assess the binding modes and the alchemical binding free energy of silibinin A and B against the 3D crystal structures 3MY0 (ACVR1/ALK1), 3G2F (BMPR2), 3MDY (BMPR1B/ALK6), 4BG7 (ACVR1/ALK2), 2QLU (ACVR2B/ActRIIB), and 3S0C (ACVR2A/ActRIIA) were performed using procedures described in previous works from our group (Cuy et al., 2019; Encinar and Menendez, 2020; Verdura et al., 2022). All of the figures were prepared using PyMol 2.0 software and all interactions were detected using the protein-ligand interaction profiler (PLIP) algorithm.

LanthaScreen kinase assays

To obtain 10-point titration results of the regulatory activity of silibinin on the ATP-dependent kinase activity of ACVR1/ALK1, ACVR1/ALK2, BMPR1A/ALK3, BMPR2, BMPR1B/ALK6, ACVR2A/ActRIIA, ACVR2B/ActRIIB, LanthaScreen Eu kinase binding assays were outsourced to ThermoFisher Scientific using the SelectScreen™ Biochemical Kinase Profiling Service.

Animal studies

The effects of silibinin on ID3 protein expression in vivo were evaluated in archived, fresh frozen processed tumor tissues from erlotinib-refractory EGFR-mutant NSCLC mouse xenografts that were randomly assigned to receive by oral gavage vehicle control, erlotinib (100mg/kg, 5 days a week), silibinin-meglumine (100mg/kg, 5 days a week), or erlotinib plus silibinin-meglumine. Tumor cell implantation experiments in non-obese diabetic/severe combined immunodeficient (NOD/SCID) mice were performed as described elsewhere (Cuff et al., 2013a,b) and approved by the Institutional Animal Care and Use Committee (IACUC) of the Institut d’Investigació Biomèdica de Bellvitge (IDIBELL; Animal Use Protocol #6302 approved by the Animal Experimental Commission of the Government of Catalonia, Barcelona, Spain; 11/17/2011). Tumor tissues were crushed into smaller pieces in dry ice to maintain the frozen state, lysed, and then subjected to SDS-PAGE as described above.

Statistical analysis

All cell-based observations were confirmed by at least three independent experiments performed in triplicate for each cell line and for each condition. Data are presented as mean ± SD. Bar graphs, curves, and statistical analyses were generated using GraphPad Prism 10 (GraphPad Software, San Diego, CA). Two-group comparisons were performed using Student’s t-test for paired and unpaired values. Comparisons of means of ≥3 groups were performed by ANOVA, and the existence of individual differences, in the case of significant F values in ANOVA, was tested by Tukey’s multiple contrasts. p values < 0.05 and <0.005 were considered to be statistically significant (denoted as * and **, respectively). All statistical tests were two-tailed.

Results

ID3 expression is associated with the BMP receptor ALK1/ACVRL1 and the BMP ligands BMP6/BMP2 in lung adenocarcinoma patients

Activation of ID3 gene transcription is a highly complex output that is encoded in the various possible arrangements of specific BMP ligands and BMP receptor combinations that determine the signaling output of the BMP-SMAD signaling axis (Alsamarah et al., 2015; Antebi et al., 2017; Klumpe et al., 2022). Therefore, we evaluated the potential correlation between ID3 expression levels and the expression of various BMP ligands and receptors in lung adenocarcinoma (LUAD), the most common histologic subtype of NSCLC. Using LUAD patient data available in the TCGA-LUAD database (n = 510), we evaluated and ranked the magnitude and p-value of the correlation between ID3 expression and BMP ligands, activins/inhibins, GDFs, and BMP receptors (Fig. 1A). Among the BMP receptors, the expression of ACVRL1/ALK1 had the highest positive and statistically significant association with ID3 (r = 0.35, p < 0.0001; Fig. 1a, left panels). When patients were stratified based on median ID3 expression, patients with high ID3 expression had significantly higher expression levels of the gene encoding for the type I BMP receptor ACVRL1/ALK1 (Fig. 1B, top panels). Endoglin (ENG), a coreceptor for the high-affinity ligand for ALK1 BMP9, was also significantly associated with the expression of ID3 in LUAD patients (r = 0.27, p < 0.0001). Among the ligands, BMP6 expression showed the highest positive and statistically significant association with ID3 (r = 0.38, p < 0.0001; Fig. 1A, right panels). When patients were stratified based on median ID3 expression, patients with high ID3 expression had significantly higher levels of BMP6 (Fig. 1b, bottom panels). This suggests that high levels of the BMP ligand BMP6 may act as a potential driver of ID3 in LUAD. BMP2 was also significantly associated with the expression of ID3 in LUAD patients (r = 0.35, p < 0.0001).

Silibinin inhibits the BMP9-ALK1-SMAD1/5-ID3 signaling pathway in endothelial cells

Given that the endothelial cell-restricted ACVRL1/ALK1 receptor (Alsina-Sanchis et al., 2018) was significantly associated with ID3 expression in LUAD patients, we first explored if the presence of silibinin may modify the ability of the ALK1 ligand BMP9 to activate the ALK1-SMAD1/5-ID3 signaling pathway in ECs. To address this question, we selected a clinically-relevant human brain microvascular model of ECs namely the hCMEC/D3 cells (Wekslers et al., 2005), which acquire an ID3-driven stem cell-like signature in response to microvascular injury and are widely used as a valuable model of human BBB permeability and brain metastatic cell crossing (Das and Felty, 2014, 2015; Das et al., 2015).

Immunoblotting confirmed that the addition of BMP9 strongly enhanced the SMAD1/5 phosphorylation and robustly upregulated the expression of ID3 protein in hCMEC/D3 ECs. Although TGFβ has been shown to induce lateral activation of SMAD1/5 via Tjγ1/ALK5 and ALK1 complexes in embryonic ECs (Hiepen et al., 2019, 2020), TGFβ treatment has no effect on either phospho-SMAD1/5 or ID3 status in hCMEC/D3 ECs (Fig. 2A). BMP9 can also phosphorylate SMAD2 through heterodimeric complexes of ALK1/ActR2 in HUVEC ECs (Hiepen et al., 2019, 2020), but we did not observe any activation of SMAD2 in
response to either BMP9 or TGFβ in hCMEC/D3 ECs (Fig. 2a). Taken together, these results confirmed that hCMEC/D3 ECs are an ideal model to evaluate the ability of silibinin to inhibit the BMP9-ALK1-SMAD1/5-ID3 signaling pathway. Addition of silibinin significantly reduced BMP9-induced SMAD1/5 phosphorylation and completely blunted the downstream upregulation of ID3 protein in a time-dependent manner (Fig. 2b). Although with different temporal dynamics, silibinin was as efficient as the potent ALK1 inhibitor K02288 (Chen et al., 2021; Sanvitale et al., 2013) in preventing BMP9-stimulated activation of SMAD1/5 and ID3 protein expression. We then verified that the ability of silibinin to impede the BMP9 up-regulatory signaling on ID3 expression occurred at the transcriptional level by assessing the effect of silibinin and K02288 on BMP9-induced ID3 gene expression in hCMEC/D3 ECs using quantitative real-time PCR (qRT-PCR). The drastic induction of ID3 mRNA occurring upon stimulation with BMP9 was significantly prevented in the presence of silibinin, largely mimicking the inhibitory activity of the selective type I BMP receptor inhibitor K02288 (Fig. 2b).

Fig. 1. Correlation of ID3 with the expression levels of BMP ligands and BMP receptors in patients with lung adenocarcinoma (LUAD). A. Pearson correlation coefficients and p-values between ID3 mRNA expression levels and several BMP receptor (left panels) and BMP ligand (right panels) genes in patients with LUAD (n = 510). B. cBioPortal “oncoprint” representation of co-alterations in ID3 and BMP receptor genes (left panels) and BMP ligands (right panels). Numbers indicate the frequency of ID3 mRNA expression changes (low/high). Inset schematic: ID3 expression is positively correlated with the mRNA expression levels of specific members of the BMP/BMPR signaling pathway (i.e., ALK1/ENG receptors and BMP6/BMP2 ligands) in patients with LUAD.
Silibinin suppresses constitutive, acquired, and adaptive upregulation of ID3 expression in NSCLC cells

We then investigated the ability of silibinin to regulate ID3 protein expression in a broad panel of NSCLC cell lines with epithelial (E), mesenchymal (M) or mixed epithelial/mesenchymal (E/M) phenotypes (Schliekelman et al., 2015; Thomson et al., 2005; Verdura et al., 2022). Constitutive overexpression of the ID3 protein was detected exclusively in NSCLC models enriched with mesenchymal-like cell subpopulations, such as H460 and A549, the hybrid E/M cell line PC-9 and its erlotinib-resistant derivative PC-9/ER, which showed a further enrichment of ID3 expression in a dose- and time-dependent manner (Fig. 3b, Verdura et al., 2022). In all ID3-positive NSCLC cell models tested, namely H460, A549, PC-9, PC-9/ER and H2228/CR, silibinin treatment significantly downregulated or completely suppressed ID3 protein overexpression in a dose- and time-dependent manner (Fig. 3b, left panels). The regulatory effects of silibinin on ID3 cannot be attributed to general (or basal) cytotoxicity based on the inhibitory concentrations (IC50) calculated after 72 h of silibinin exposure by MTT assay (Table S1). qRT-PCR analysis confirmed that the levels of ID3 mRNA were significantly up-regulated in the mesenchymal-like NSCLC cell models that over-expressed the ID3 protein, indicating that specific changes in ID3 mRNA expression closely correspond to changes in ID3 protein expression status in NSCLC cells (Fig. 3a, bottom panel). To determine whether silibinin could downregulate ID3 expression at the mRNA level in NSCLC cells as it did in ECs, we used H2228/CR cells as a model of acquired ID3 overexpression (up to 7-fold higher ID3 mRNA compared to parental H2228 cells). Treatment with silibinin reduced the ID3 transcript levels by a factor of several fold in a dose- and time-dependent manner, even below the baseline levels observed in the parental H2228 cells (Fig. 3b, right panels).

Exposure of parental H2228 cells to multi-generation ALK TKIs, including crizotinib, brigatinib, and lorlatinib, promoted significant phospho-activation of SMAD1/5 (Fig. 3c). This was accompanied by upregulation of ID3 at both protein and mRNA levels. Silibinin and the pan-type BMPR inhibitor dorsomorphin, but not K02288 (with increased selectivity for ALK1 and ALK2 over other type I BMP receptors and reduced off-targets compared to dorsomorphin), prevented ALK TKIs-induced upregulation of ID3 protein and ID3 transcripts, while...
responsive elements cally with ECR1 (Nurgazieva et al., 2015). Reporter plasmids containing between or BMP-responsive elements in the regulatory sequences of the human mediated regulation of that silibinin can transcriptionally attenuate the BMP/SMAD1/5-mRNA levels by inhibiting Silibinin transcriptionally suppresses ID3 gene expression via BMP-

The above results suggest that silibinin could cause a decrease in ID3 mRNA levels by inhibiting ID3 gene transcription. To further confirm that silibinin can transcriptionally attenuate the BMP/SMAD1/5-mediated regulation of ID3 gene expression, we used previously generated reporter plasmids with or without SMAD1/5-responsive enhancers or BMP-responsive elements in the regulatory sequences of the human ID3 gene (Nurgazieva et al., 2015; Shepherd et al., 2008). Bioinformatics analysis of novel, potentially SMAD-dependent regulatory elements in the ID3 gene has allowed the identification of enhancers located between −3177 and −2660 bp upstream of the transcription start site (i.e., a so-called evolutionary conserved region [ECR] 1) and ECR2 located between +4517 and 4662 bp downstream of the ID3 gene that contains also BRE sites (Nurgazieva et al., 2015). The ECR1 overlaps with a previously described BMP-responsive element in the upstream enhancer of the ID3 gene (nucleotides −3138/−2923 base pairs) (Shepherd et al., 2008), while the ECR2 is a novel SMAD1/5-dependent regulatory element capable of enhancing promoter activity by acting synergistically with ECR1 (Nurgazieva et al., 2015). Reporter plasmids containing either ECR1, ECR2 or both ECR1/ECR2 regions cloned together with an approximately 1-kb fragment of the ID3 gene promoter were transfected into HEK293 cells and luciferase activity was measured 24 h after transfection. When combined, ECR1 and ECR2 showed a more than additive effect, resulting in a highly significant upregulation of ID3 promoter activity, particularly in response to BMPs (Fig. 4a). BMP6 was the most effective among the BMPs tested in stimulating ID3 promoter activity in combination with ECRs, especially in the co-presence of ECR1 and ECR2. Silibinin closely mimicked the ability of dorsomorphin—a pan-BMP signaling inhibitor of all type I BMP receptors (ALK2, ALK3, and ALK6) that blocks BMP-mediated SMAD1/5/8 activation—in preventing BMP6- (and also BMP4-) induced activation of the regulatory sequences of the ID3 gene. Silibinin partially phenocopied the potent ALK1 inhibitor K02288 to block the BMP9-driven hyperactivation of the ECR1/ECR2-dependent ID3 promoter activity.

Given the exquisite ability of silibinin to prevent the transcriptional activation of the ID3 gene promoted by BMP6, the BMP ligand with the highest positive correlation with ID3 in LUAD patients (Fig. 1), we decided to mechanistically investigate the DNA regulatory elements that control silibinin-mediated suppression of ID3 expression driven by BMP6 signal transduction. HEK293 cells transfected with a pGL2-hID3 reporter containing −4432 to +75 base pairs (bp) of the upstream region of the human ID3 gene, which contains two clusters of SMAD binding sites (i.e., region A and region B), responded significantly to BMP6 (but not to TGFβ), confirming a similar regulation as previously observed with autocrine BMP4 signaling on the endogenous ID3 gene in ovarian cancer cells (Shepherd et al., 2008; Fig. 4b). The BMP6-induced upregulation of the full-length ID3 promoter regulatory region was significantly abolished by silibinin treatment. The existence of a BMP6 responsive region required for the ID3 regulatory effects of silibinin was confirmed by a large-scale deletion at the 5′ end to −2728 bp. Deletion of the BMP6-responsive region prevented silibinin-mediated suppression of the endogenous ID3 gene, suggesting a requirement for BMP6 responsive elements adjacent to the BMP6-responsive region for silibinin-mediated suppression.
the so-called region A including some putative SMAD elements resulted a similar BMP6 responsiveness that was completely abolished in the presence of silibinin. Indeed, the single BMP-responsive ID3 enhancer region (or regulatory region B), including a SMAD4-binding CAGA box and a conserved BMP-responsive element (BRE) site, was sufficient to confer a full BMP6 responsiveness that was exquisitely sensitive to the repressive regulatory effects of silibinin (Fig. 4b). Using reporter constructs with point mutations within the −3138/−2923 region, we observed that while mutation of the CAGA box had no effect on the ability of BMP6 and silibinin to regulate reporter activity, the BMP6 and silibinin responsiveness of the ID3 enhancer was completely abolished by mutation of the single BRE site that is adjacent to the second CAGA box of the region B (Fig. 4b).

Fig. 4. Identification of the ID3 gene regulatory regions targeted by silibinin. A. Top. Structure of the ID3 genomic locus showing the enhancers located within the ECR1 and ECR2 regulatory regions and schematic structure of the luciferase plasmid constructs. Bottom. Luciferase reporter gene assays of BMP6-induced ID3 promoter and enhancer activities in transfected HEK239T cells cultured in the absence or presence of silibinin (100 μM/l), dorsomorphin (1 μM/l) or K02288 (1 μM/l). Each bar represents the mean ± S.D. and the data are representative of three independent experiments performed in triplicate. *p < 0.05, **p < 0.005, statistically significant differences. n.s. not significant. B. Top. BMP-responsive elements of the upstream ECR1 enhancer region of ID3 and schematic structure of the luciferase plasmid constructs. Bottom. Luciferase reporter gene assays of BMP6-induced ID3 (ECR1) enhancer activity in transfected HEK239T cells cultured in the absence or presence of silibinin (100 μM/l) or dorsomorphin (1 μM/l). Each bar represents the mean ± S.E. and the data are representative of three independent experiments performed in triplicate. *p < 0.05, **p < 0.005, statistically significant differences. DSM, dorsomorphin; SBN, silibinin; RLU, relative light units. n.s. not significant.
Silibinin is a BMPR receptor inhibitor with significant inhibitory activities against ACVRL1/ALK1, BMPR2 and ALK6

We then investigated whether the above-described ability of silibinin to transcriptionally block the BMP/BMPR-ID3 signaling axis might reflect a direct inhibitory interaction of silibinin with one or various BMPRs. Given that most of the reported inhibitors of the type I BMP receptors work by displacing ATP from the catalytic pocket of the kinase domain, we first performed structural investigations to assess the compatibility of silibinin with the ATP pocket of BMPRs. As silibinin naturally occurs as a 1:1 diastereoisomer mixture of silybins A (7'R, 8'R) and B (7'S, 8'S) that configurationally differs in the lignan moiety (Kren et al., 2021; Sciacca et al., 2017), we performed classical molecular docking studies of silybin A and silybin B into the ATP/binding pocket of the seven types I and II BMP receptors (Fig. 5a). When silybin A was used, the resulting binding energies with the docking simulation were in the range of −8.2 to −9.7 kcal/mol. This range was generally higher (from −9.6 to 11.7 kcal/mol) when silybin B was used instead of silybin A. Although it could be argued that these narrow ranges of binding energies largely reflect the high degree of structural similarity between the ATP-binding pocket in the BMP receptors, it was noteworthy that slightly higher binding energies were observed for BMPR2 (−9.465 ± 0.574 [A] versus −11.694 ± 0.730 [B] kcal/mol), ALK6/BMPR1B (−9.646 ± 0.020 [A] versus −11.739 ± 0.640 [B] kcal/mol), and ALK1/ACVRL1 (−9.710 ± 0.492 versus −10.677 ± 0.771 [B] kcal/mol) when the silybin B diastereomer was used in the docking simulations. When the binding affinities were considered in terms of dissociation constants (Kd, which is inversely proportional to the affinity of the BMPR for silibinin), the different behavior predicted for the silibinin diastereoisomers was even more evident. High-affinity Kd values below 100 nM/l were predicted for silybin B against several BMPRs (as low as 5 nM/l for BMPR2 and ALK6/BMPR1B), whereas most Kd values were in the medium to low affinity range (100 nM/l - 2 μM/l) when silybin A was used (Table S2). To better understand these predicted trends, we performed molecular dynamics (MD) simulations for each of the BMP receptor-silybin A/B complexes to account for protein flexibility at the target-binding site during the molecular recognition process, thus allowing to confirm the kinetic stability and to validate the binding poses obtained by docking. To rationalize structure-activity relationships and selectivity profiles of silybin A/B ligands, we first calculated the alchemical binding free energy of silibinin against BMP receptors from the entire MD simulation trajectory of 100 ns (or last 30

Fig. 5. In silico prediction and in vitro verification of silibinin as a direct inhibitor of BMPRs. A. Molecular docking simulations and binding energies (ΔG, in kcal/mol) of the silibinin diastereoisomers silybin A (SNB-A) and silybin B (SNB-B) to the ATP-catalytic site of BMPRs. B. Molecular mechanics Poisson-Boltzmann surface area (MM/PBSA) binding energy analyses calculated from the entire trajectory of the 100 ns (or last 30 ns) molecular dynamics (MD) simulations of SNB-A and SNB-B coupled to the catalytic site of BMPRs. C. Left. Schematic of the LanthaScreen Eu Kinase Binding Assay. Binding of an Alexa Fluor conjugate or “tracer” to a kinase is detected by the addition of an Eu-labeled anti-tag antibody. Binding of the tracer and antibody to a BMPR kinase results in a high level of FRET, whereas displacement of the tracer with a putative BMPR kinase inhibitor results in a loss of FRET. The tracers are based on ATP-competitive kinase inhibitors, making them suitable for the detection of any compound that binds to the BMPR ATP site (type I BMPR kinase inhibitors) and/or to an allosteric site that alters the conformation of the ATP site (type II BMPR kinase inhibitors). Right. Bar graphs showing the IC₅₀ values of silibinin for the ATP-dependent activity of BMPRs calculated from dose-response curves of LanthaScreen Eu kinase binding assays measuring the decreases in emission ratios induced by graded concentrations of silibinin (see “Materials and methods” section). Results are presented as the means (columns) ± S.D (bars) of three independent experiments performed in duplicate. D. The best positions of SNB-A and SNB-B coupled to the catalytic site of ACVRL1/ALK1, BMPR2, and ALK6 before (0 ns) and after (100 ns) the MD simulations are shown. The protein is plotted as a function of the hydrophobicity of its surface amino acids, and the Na⁺ and Cl⁻ ions have been removed to facilitate visualization. Each inset shows the detailed interactions of the participating amino acids involved and the type of interaction (hydrogen bonds, hydrophilic interactions, salt bridges, Π-stacking, etc.).
ns) using the binding free energy calculations under the molecular mechanics Poisson–Boltzmann surface area (MM/PSA) approximation (Fig. 5b). Using > 20 kcal/mol as a filtering criterion, only BMPR2 was catalogued as a putative target of silybin A. Four BMP receptors, namely BMPR2, ALK1, ALK2, and ALK6, were catalogued as putative targets of silybin B.

We then used the LanthaScreen Eu kinase binding assay to verify whether silybin could function as an inhibitor of the ATP-dependent catalytic activity of BMPs. This assay is designed to detect any compound binding to the ATP site, including those binding to the ATP site and adjacent allosteric sites that may be exposed in inactive states of some kinases by monitoring the displacement of an Alexa Fluor 647-labeled “tracer” from the ATP-binding site of an epitope-tagged kinase (here, type II and type I BMP receptors) by a test compound (here, silybin; Fig. 5c). Such a behavior results in a decreased time-resolved fluorescence resonance energy transfer (FRET) signal. The dose-response curves showed that although the emission ratio was decreased in a dose-dependent manner by graded concentrations of silybin, the IC_{50} values of silybin differed up to fivefold between the less sensitive and the more sensitive BMP receptor. Thus, while silybin concentrations as high as 148 μM/l were required to achieve a half-maximal degree of inhibition in the case of BMPR1A/ALK3, silybin concentrations as low as 32 μM/l were sufficient to achieve the IC_{50} value against ALK1/ACVR1L. BMPR2, which exclusively binds BMPs but not activin, and ALK6/BMPR1B, which preferentially binds BMP2 and BMP4, also exhibited IC_{50} values below 50 μM/l, while IC_{50}s against ActRIIB/ACVR2B, ALK2/ACVR1, and ActRIIA/ACVR2A ranged from ~60 to 75 μM/l silybin. Fig. 5D shows the best poses of silybin A and B coupled to the ATP-dependent catalytic cavities of BMPR2, ALK1, and ALK6 to assess the predicted amino acid residues involved in the different diastereoisomeric binding before (0 ns) and after (100 ns) the MD simulation.

Oral treatment with silybin suppresses ID3 overexpression in vivo

Finally, to provide definitive validation of the translational potential of the ID3 inhibitory effects of silybin in vitro cell models, we evaluated the ability of an oral milk thistle extract formulation enriched (30% w/w) with a water-soluble form of silybin complexed with the amino-sugar meglumine to downregulate ID3 overexpression in an in vivo xenograft model of PC-9/ER cells (Cufí et al., 2013a,b). After 35 days of oral treatment with vehicle control, erlotinib (100 mg/kg, 5 days per week), silybin-meglumine (100 mg/kg, 5 days per week), or silybin-meglumine plus erlotinib, tumors were collected and snap frozen for the isolation of protein. Remarkably, the extremely high levels of ID3 protein that were observed in PC-9/ER tumors, including those from the erlotinib-treated arm, were drastically down-regulated or completely suppressed in response to systemic treatment with either silybin-meglumine as a single agent or the combination of erlotinib plus silybin-meglumine (Fig. 6). Sub-optimal doses of silybin-meglumine (50 mg/kg, 5 days per week) were still able to significantly reduce ID3 protein expression in PC-9/ER tumors (Fig. S2).

Discussion

We report that the milk thistle-derived flavonolignan silybin is a novel inhibitor of ID3, a transcription factor that is primarily expressed during development to inhibit differentiation, but is aberrantly re-expressed in vascular disease and biologically aggressive carcinomas (Ling et al., 2014; Perez and Felty, 2022). Our discovery that silybin antagonizes activation of the metastasis-promoting ID3 transcription factor in both the endothelial and tumor cell compartments may be explored as a novel therapeutic approach to interfere with the metastatic dissemination capacity of NSCLC.

NSCLC is a paradigm of human malignancy in which the expression of ID proteins is a strong prognostic biomarker for poor clinical outcome in patients treated with chemoradiotherapy (Castanon et al., 2013; Ponz-Sarvise et al., 2011). The expression levels of ID1 and ID3 are positively correlated, but the expression level of ID1 is significantly higher and more abundant than that of ID3 in NSCLC (Castanon et al., 2013). In view of the strong sequence similarity and presumed functional redundancy, it could be argued that such an imbalance reflects ID1 activation to functionally compensate for absence of ID3 (O’Brien et al., 2012; Teo et al., 2020). However, it could also reflect a different mechanistic regulation that is related to the different functions of ID1 and ID3 in the promotion of cancer phenotypes (Chaudhary et al., 2001; Perry et al., 2007). ID3 may play a more important role than ID1 in the regulation of BMP-induced cell growth and survival in lung cancer cells (Langelfeld et al., 2013a). Both ID1 and ID3 downregulate all three cyclin-dependent kinase inhibitors CDKN1B (p27), CDKN1A (p21) and CDKN2B (p16) to accelerate cell proliferation rates. However, ID3 is a preferential regulator of p27 (Garrett-Engele et al., 2007; Chassot et al., 2007), suggesting that ID3 is a more potent therapeutic target than ID1. In spite of the presumed different roles of ID1 and ID3, little is known

![Fig. 6. In vivo anti-ID3 activity of a water-soluble form of silybin. Top schematic. Systemic administration by daily oral gavage of a non-toxic, orally active, milk thistle extract rich in silybin-meglumine, a water-soluble form of silybin complexed with the excitipient amino-sugar meglumine, reduces tumor volumes of erlotinib-refractory PC-9/ER xenografts by approximately 50 %, while a complete abrogation of tumor growth was observed with the co-treatment of erlotinib and silybin-meglumine (Cufí et al., 2013a,b). Bottom. Representative immunoblots for ID3 in tumor tissues obtained from PC-9/ER xenograft-bearing mice treated with vehicle control, erlotinib (100 mg/kg, 5 days per week), silybin-meglumine (100 mg/kg, 5 days per week), or silybin-meglumine plus erlotinib. Also shown are β-actin loading controls.](image-url)
transcriptional activator of brain angiopathy gene networks, which are stress conditions leads to increased neovascularization and abnormal of vascular stem cells under conditions of oxidative stress in the path (Langenfeld et al., 2003, 2005, 2006; 2013a,b; Newman et al., 2018). Interestingly, the expression status of ID3 was also significantly correlated with the expression status of the BMP ligands BMP6 and BMP2, which are expected to be expressed in the tumor cell compartment of NSCLC and confer poor prognosis by stimulating stem-like phenotypes through the activation of Ids (Langenfeld et al., 2003, 2005, 2006; 2013a,b; Newman et al., 2018). Accordingly, ID3 overexpression endothelial stem-like cells can direct metastatic cancer cells to cross the BBB (Jayanta et al., 2018), further studies should explore the possibility that anti-ID3 activity of silibinin in brain vascular endothelium may significantly modify both the ability to cross the BBB and the ultimate fate of brain-tropic metastatic cancer cells (i.e., overt BM formation, dormancy, or clearance) involving BBB remodeling.

We observed constitutive and acquired high levels of ID3 expression in NSCLC cell lines with either constitutive or acquired mesenchymal characteristics. Reactivation of fundamental embryonic processes such as EMT is associated with increased cancer cell plasticity, resistance to therapy, reprogramming of the local immune response towards immunosuppressive microenvironments, and poor prognosis in several cancers including NSCLC (Byers et al., 2013; Chae et al., 2018; Mak et al., 2016; Thompson et al., 2020). ID3 overexpression in mesenchymal-like NSCLC cells, which may reflect a convergent downstream target of not only autocrine/paracrine BMP signals but also of commonly activated pro-proliferative and pro-angiogenic pathways in cancer cells. The transcriptional suppression of ID3 overexpression by silibinin was certainly notable in EMT-like NSCLCs with acquired resistance to ALK and EGFR TKIs (Cuffi et al., 2013a,b; Kim et al., 2013; Vazquez-Martin et al., 2013; Verdua et al., 2022). A hyperactive BMP-BMPR-Smad signaling leading to transcriptional activation of ID3 expression is critical for a successful reprogramming of differentiated cells into iPSCs (Hayashi et al., 2016). In addition, blockade of differentiation transcription factor by ID3 enables the self-renewal response to STAT3 activating signals such as the leukemia inhibitory factor (LIF), a pro-metastatic and immunomodulatory factor of the IL-6 cytokine superfamily (Ying et al., 2003). Given the well-established ability of silibinin to directly block STAT3 activity (Verdua et al., 2018) as an effective mechanism to suppress brain metastasis and therapy-resistant EMT phenotypes (Prieo et al., 2018; Verdua et al., 2021), it may be tempting to speculate that the unanticipated capacity of silibinin to inhibit ID3 overexpression could act in synergy with its anti-STAT3 activity to fine-tune the phenotypic plasticity and EMT switching of metastatic cancer cells. Immediate early genes such as ID3 are rapidly and transiently expressed in response to stressful signals, particularly oxidative damage (Das and Felty, 2014; Mueller et al., 2002). ALK-TKIs such as crizotinib are known to produce excessive endogenous levels of oxidants as a major mechanism of cytotoxicity in various cell types, including cancer cells (Dai et al., 2017; Guo et al., 2021; Yan et al., 2019; Varma and Twiari, 2021). Our finding that ID3 is transcriptionally activated in response to multi-generation ALK-TKIs (i.e., crizotinib, brigatinib, and lorlatinib) may indicate that inductive activation of ID3 is an adaptive antioxidant-mitochondrial response that can be suppressed by silibinin to sensitize NSCLCs to ALK-TKIs.

Aberrant BMP signaling, which leads to the overexpression of ID genes observed in many human cancers, is initiated by one of ~ 20 different extracellular dimeric BMP ligands, typically acting in a paracrine manner (Alsamarih et al., 2015; Anteluj et al., 2017; Klumpe et al., 2022). BMP ligands signal by binding to three distinct type II receptors (BMPR2, ActR2A/ACVR2A, and ActR2B/ACVR2B), which differ in their ligand and oligomerization partner preferences, and at least four type I receptors commonly known as activin receptor-like kinases (ALK1/ACVRL1, ALK2/ACVR1, ALK3/BMPR1A, and ALK6/BMPR1B) (Nickel and Mueller, 2019; Sanchez-Duhoufes et al., 2020). Subsequently, activated BMP type I receptors (ALK1/2/3/6) within the BMP receptor complex phosphorylate the BMP-responsive
diastereoisomers (silybin A and silybin B) (KKBMP/SMAD/ID3 axis upstream. Computational modeling of silibinin revealed that silibinin possesses a structural basis for the inhibition of et al., 2017) at the catalytic ATP pocket of the BMPR kinase domains evaluation of kinase selectivity assays, we profiled the ability of silibinin of BMP-responsive elements and SMAD1/5-responsive enhancers located upstream and downstream of intronic enhancers of the ID3 gene (Nurzazeva et al., 2015; Shepherd et al., 2008). These data raise the possibility that silibinin may reduce endogenous ID3 mRNA expression by blocking autocrine BMP signaling-induced DNA-protein interactions present at the enhancer elements of the ID3 gene not only in NSCLC tumor cells themselves but also in the ID3-expressing neovascular endothelium of NSCLC tumors. Specifically, silibinin appears to target ID3 expression by preventing the SMAD complex binding to BRE enhancer elements. Using side-by-side comparisons of in silico computational modeling studies with in vitro evaluation of kinase selectivity assays, we profiled the ability of silibinin to function as a putative BMP receptor kinase inhibitor to block the BMP/SMAD/ID3 axis upstream. Computational modeling of silibinin diastereoisomers (silybin A and silybin B) (Kön et al., 2021; Sciaccia et al., 2017) at the catalytic ATP pocket of the BMPR kinase domains revealed that silibinin possesses a structural basis for the inhibition of specific BMP receptors as a small molecule. Our in silico approach suggested a putative role of silibinin stereochemistry in determining the inhibitory potential of silibinin against the kinase activity of BMP receptors, implicating silybin B as the major responsible for the observed BMP/SMAD1/5 signaling-targeted inhibitory effects of the diastereoisomeric silibinin mixture used in cell culture-based experiments. Silybin B, but not silybin A, was predicted to occupy the kinase hinge region of ALK1 in an ATP-mimetic fashion and directly hydrogen-bond to both His280 and the catalytic β3 l苏ine (Lys229), partially mimicking the inhibitory mechanisms of the ALK1 inhibitors LDN-193,189 and K02288 (Kerr et al., 2015; Sanvitale et al., 2013). Silybin B, but not silybin A, was predicted to interact via hydrogen bonding with the kinase hinge region of BMPR2 and further hydrogen bonding with the Lys230-containing catalytic loop and the phosphate-binding loop (Chaikud et al., 2019). Both silybin A and silybin B were predicted to occupy the ATP binding pocket of ALK6 involving direct interactions with the catalytic Lys231 (Rooney and Jones, 2021). To confirm the binding potency of silibinin to specific BMPs, we used a LanthaScreen Eu-based time-resolved FRET-based kinase binding assay to compare the inhibitory potency of silibinin against seven different BMPRs. In vitro screening assays confirmed that silibinin can act as a promiscuous ATP-competitive antagonist of the serine/threonine kinase activity of BMP receptors type I (e.g., ALK1 and ALK6) and type II (e.g., BMPR2) in the tens of micromolar range. Except for ALK2, the predicted binding affinities were in very good agreement with the experimental ones obtained with the natural 1:1 silybin A:silybin B mixture. These computational findings may guide the development of silibinin and/or the next generation of silibinin derivatives as novel BMPR-targeting therapeutics to counter the ID3-driven metastatic phenotype in brain ECs and NSCLC cells.

Our study has several limitations that should be acknowledged. First, silibinin may affect ID3 expression not only by reducing ID3 gene transcription (through the BMP/BMPR/SMAD pathway carefully dissected here), but also by promoting an imbalance between protein degradation and synthesis in some scenarios. Curcumin, the major phytochemical component of turmeric that synergistically interacts with silibinin to exert anticaner activity (Montgomery et al., 2016; Sayyed et al., 2022), can trigger the degradation of ID3 by promoting its proteasome-dependent proteolysis (Bese et al., 2004). Further studies should explore whether silibinin can mimic curcumin to target an as yet unknown ID3 ubiquitin ligase and increase the rate of ubiquitin-dependent degradation of ID3. Second, silibinin may reduce ID3 protein synthesis without affecting ID3 protein degradation in NSCLC cells. Silibinin has been shown to block mammalian target of rapamycin (mTOR) signaling to inhibit translation initiation and global protein synthesis associated with reduced levels of eukaryotic initiation factor 4F complex (Garcia-Maceira et al., 2005; Jung et al., 2009; Lin et al., 2009). Whether the partial collapse of polysomes that can be observed in response to silibinin is accompanied by pronounced consequences on the specific translation of the ID3 mRNA, as has been shown for cyclin D1 (Lin et al., 2009) or HIF-1α (Jung et al., 2009), deserves further investigation. Third, it remains to be determined whether silibinin-driven blockade of ID3 expression causally disrupts several metastatic features in the NSCLC phenotype, including cell spreading/motility, and/or EMT-related drug resistance phenomena.

Systemic administration of an orally active, water-soluble form of silibinin complexed with the amino-acid excipient meglumine (Cufi et al., 2013a,b) was able to completely suppress the extremely high levels of ID3 expression found in EGFR TKI-refractory xenografted tumor tissues in vivo. The corresponding human equivalent dose (HED) for the dose of silibinin used in our in vivo study, which was equivalent to 100 mg/kg mouse body weight, was 8.11 mg/kg. This corresponds to a dose of 486.49 mg of silibinin for a 60-kg individual, an HED that is likely within the dose range that can be achieved in target cancer tissues when using clinically available formulations of silibinin (Bosch-Barrera et al., 2016; Hoh et al., 2006; Kidd, 2009).

Conclusions

As evidence accumulates that ID3 plays a causative role in the spread of metastatic cancer cells to the brain (Das et al., 2022; Das et al., 2018), in the development of adaptive drug resistance to TKI (Sachindra et al., 2017), and in T-cell exhaustion during CAR T-cell immunotherapy (Good et al., 2021), the discovery and development of novel ID3 suppressing agents are urgently needed. We here describe for the first time how the milk thistle flavonolignan silibinin, which has been marketed as a dietary supplement, operates as a novel drug-like inhibitor of ID3 acting at least in part as a BMP receptor antagonist (Fig. 7). Given the dual capacity of ID3 to drive metastasis by conferring molecular stem cell properties not only in microvascular ECs but also in biologically aggressive subsets of cancer cells, nutraceutical formulations of silibinin with improved bioavailability properties and demonstrated clinical activity could be explored as potential strategy to interfere with the ID3-driven metastatic traits in NSCLC.

Funding

The work in the Menendez laboratory is supported by the Ministerio de Ciencia e Innovacion (MCIN, grants PID2019-104055GB-I00 and PID2022-141955SB-I00) to Javier A. Menendez, Plan Nacional de I + D + i, funded by the European Regional Development Fund, Spain) and the Emerging Research Group SGR 2021 01,507 to Begona Martin-Castillo from the Agencia de Gestión d’Aixtats Universitaris i de Recerca (AGAUR, Generalitat de Catalunya). Elisabet Cuyás holds a “Miguel Servet” research contract (CP20/00,003) from the Instituto de Salud Carlos III (Spain) and is supported by the Grant PI22/00,297 (Instituto de Salud Carlos III, Proyectos de I + D + I en Salud, Acción Estratégica en Salud 2021–2023, founded by the European Regional Development Fund, Spain). The work in the Jose A. Encinar laboratory is supported by the Spanish Ministry of Economy and Competitiveness (MINECO, Grant RTI2019–996,724-B–C21) and the Generalitat Valenciana (PROMETEO/2021/059). Eila Serrano-Hervás holds an INVESTIGO research contract (2022 INV-1 00,001, Next Generation Catalunya, Next Generation EU) from the Agencia de Gestió d’Aixtats Universitaris i de Recerca (AGAUR, Generalitat de Catalunya). Eduard Teixidor holds a “Río Hortega” research contract (CM22/00,276, Proyectos de I + D + I en Salud, Acción Estratégica en Salud 2021–2023, founded by the European Regional Development Fund, Spain) from the Instituto de Salud Carlos.
During the preparation of this paper, the authors did not use any AI tool/service or AI-assisted technologies in the writing process.

CRediT authorship contribution statement

Declaration of competing interest

The authors declare that they have no known competing financial interests regarding the publication of this paper.
interests or personal relationships that could have appeared to influence the work reported in this paper.

Acknowledgments

We are very grateful to Mark W. Nachigal for kindly providing us with all the pG2L-ID3 reporters, which were instrumental in the functional identification of the elements responsible for silibinin regulation of BMP-stimulated ID3 gene transcription. We also thank Jin Kyung Rho (Department of Convergence Medicine, Asan Medical Center, University of Ulsan, College of Medicine, Seoul, South Korea) and Jae Cheol Lee (Department of Oncology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea) for providing us the H2228–H2228/CR (crizotinib-resistant) cell line pair and Daniel B. Costa (Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA) for providing the H3122–H3122/CR (crizotinib-resistant) cell line pair. We are grateful to the Servicio de Supercomputación of the University of Granada for allowing us to use the ALBAICIN computer cluster (https://supercomputacion.ugr.es/arquitecturas/albaicin/). We wish to especially thank Santiago Melchor for his kind help and collaboration. We are also grateful to the Cluster of Scientific Computing (http://ccc.umin.es) of the Universidad Miguel Hernández (UMH) for providing computing facilities.

Supplementary materials

Supplementary material associated with this article can be found, in the online version, at doi:10.1016/j.phymed.2024.155493.

References

Supplementary materials

his kind help and collaboration. We are also grateful to the Cluster of Scientific Computing (http://ccc.umin.es) of the Universidad Miguel Hernández (UMH) for providing computing facilities.

Supplementary material associated with this article can be found, in the online version, at doi:10.1016/j.phymed.2024.155493.

References

Supplementary materials

his kind help and collaboration. We are also grateful to the Cluster of Scientific Computing (http://ccc.umin.es) of the Universidad Miguel Hernández (UMH) for providing computing facilities.

Supplementary material associated with this article can be found, in the online version, at doi:10.1016/j.phymed.2024.155493.

References

Supplementary materials

his kind help and collaboration. We are also grateful to the Cluster of Scientific Computing (http://ccc.umin.es) of the Universidad Miguel Hernández (UMH) for providing computing facilities.

Supplementary material associated with this article can be found, in the online version, at doi:10.1016/j.phymed.2024.155493.

References

Supplementary materials

his kind help and collaboration. We are also grateful to the Cluster of Scientific Computing (http://ccc.umin.es) of the Universidad Miguel Hernández (UMH) for providing computing facilities.

Supplementary material associated with this article can be found, in the online version, at doi:10.1016/j.phymed.2024.155493.

References

Perez, C.M., Gong, Z., Yoo, A.J., Felty, Q., 2022. Induction of DNA binding protein 3 (ID3) and nuclear receptor factor 1 (NRF1) mediated transcriptional gene signatures are associated with the severity of cerebral amyloidosis.
Shepherd, T.G., Iavarone, A., Benezra, R., 2005. Id1 and Id3 expression is associated with development of breast cancer. Cancer Res. 65, 603-614.

Sharma, P., Patel, D., Chaudhary, J., 2012. Id1 and Id3 expression is associated with increasing grade of prostate cancer: Id3 preferentially regulates CDR1NB. Cancer Med. 1, 187-197.

