Cuando nos fijamos en la estructura de proteínas que interaccionan con DNA podemos observar que ciertos motivos estructurales se repiten. A continuación se muestran ejemplos de 6 tipos diferentes de motivos estructurales de interacción proteína-DNA.
2.1.- Nucleosoma
El nucleosoma es una estructura nuclear en la que dos vueltas de ADN (unos 83 nucleótidos por vuelta) se enrollan alrededor de un cilindro formado por 8 histonas. Dos dímero de histona H2A-H2B se asocian a un tetrámero de histonas H3-H4. La masa aproximada del octámero de histona es de 100000 daltons. Cada nucleosoma se une al siguiente por un trozo de doble cadena de ADN y en conjunto, en microscopía electrónica ofrecen un aspecto de rosario en el que las cuentas corresponden a nucleosomas individuales que se unen por la línea que es el ADN. Para que se forme tiene que ser posible que se curve el ADN. Tener una secuencia rica en AT en el surco menor facilita la curvatura del ADN. Debido a lo anterior secuencias de ADN con zonas ricas en AT espaciadas de tal forma que al hacer sus vueltas la cadena de ADN estas regiones de AT queden hacia el mismo lado de la doble hélice y en concreto hacia el lado que se va a asociar al core de histonas, serán zonas que fácilmente forman parte de nucleosomas. Son la estructura fundamental por la que el ADN se empaqueta de forma que quepa en el núcleo. Además, los nucleosomas son muy importantes en los procesos de expresión génica. Así, muchos trozos de cadena de ADN libres de nucleosomas lo son debido a la unión de proteínas de tipo factor de transcripción que regulan la transcripción.
2.1.1.- El nucleosoma está formado por: |
2.2.- Motivos hélice-giro-hélice
2.2.1.- Dímero de la proteína Cro del bacteriófago lambda; se muestra sólo una parte de la proteína correspondiente a sus dos motivos hélice-giro-hélice unida a un fragmento de DNA de 20 pb Podemos colorear la estructura del motivo que consta de: |
c. otra hélice alfa que queda más separada del DNA y forma un ángulo fijo con la primera, gracias a la rigidez del giro y a contactos entre las cadenas laterales de ambas hélices.
2.2.2.- Puedes cargar el que muestra otra proteína con dos motivos hélice-giro-hélice: el "Represor lambda", del bacteriófago lambda, unido al DNA en la región del operador.
2.3.- Motivo hélice-bucle-hélice
2.3.1.- con el dímero de la proteína Max de ratón, con dos motivos hélice-bucle-hélice idénticos, unido a un fragmento de DNA de 22 pb.
Podemos resaltar la estructura de este motivo que consta de: |
c. otra hélice alfa que no interacciona con el DNA pero sí con la otra cadena proteica, estabilizando el dímero.
2.3.2.- Puedes cargar el que muestra otra proteína con dos motivos hélice-giro-hélice: el "Represor lambda", del bacteriófago lambda, unido al DNA en la región del operador.
2.4.- Motivo homeodominio
2.4.1.- mostrando el dímero de la proteína MAT alfa-2 de levadura, con dos homeodominios idénticos, unidos a un fragmento de DNA de 21 pb.
Podemos colorear las partes de que consta este motivo: |
con otra proteína con dos motivos homeodominio formados por una subunidad de la proteína anterior MAT alfa-2 y otra de una proteína similar, MAT A-1.
2.5.- Motivo cremallera de leucinas
2.5.1.- un fragmento de la proteína GCN4 de levadura que presenta un motivo cremallera de leucinas unido a un fragmento de DNA. Este motivo consta de dos segmentos peptídicos en hélice alfa, que a su vez se arrollan ligeramente entre sí (formando una superhélice). En un extremo, estas hélices interaccionan entre sí y en el otro lo hacen con secuencias específicas de bases en el surco mayor del DNA. La interacción entre las dos hélices se mantiene principalmente gracias a la interacción entre cadenas laterales de leucina, situadas cada 7 residuos en la secuencia (2 vueltas de hélice alfa). Por otro lado, en la región que contacta con el DNA existe abundancia de aminoácidos con carga positiva, como arginina. |
2.6.- Motivo dedo de zinc
2.6.1.- Mostraremos como fragmento (residuos aminoácidos 1 a 101) del factor de transcripción TFIIIA, de la Xenopus laevis, unido a 15 pb del gen del RNA 5S. En este caso en la misma cadena polipeptídica están presentes 3 dedos de zinc. Este motivo consta de de un segmento peptídico en hélice alfa y dos en hoja beta antiparalela, de los cuales hay 4 aminoácidos (2 Cys y 2 His) cuyas cadenas laterales coordinan al ion Zn2+; este tipo de dedo de zinc se denomina por ello C2H2. |
2.6.2.- Otro ejemplo de dedo de zinc se muestra en la siguiente estructura del Receptor de estrógenos humano unido al DNA. Se trata de una proteína que posee un sólo dedo de zinc, pero que dimeriza al unirse al DNA. Este motivo tiene una estructura diferente a la que hemos visto en el ejemplo 2.6.1.: 2 iones Zn2+, coordinados cada uno por una hélice y un bucle, a través de las cadenas laterales de 4 cisteínas para cada ion Zn. Se llama dedo de zinc C4. |
Dr. Gregorio Fernandez Ballester. (IBMC-UMH)
Dr. Jesús M. Sanz Morales. (IBMC-UMH)
Dr. Ángel Herráez. (Universidad de Alcalá ) |
Dr. José Antonio Encinar. (IBMC-UMH)